Analysis of Different Neural Networks and a New Architecture for Short-Term Load Forecasting

被引:15
|
作者
Yang, Lintao [1 ]
Yang, Honggeng [1 ]
机构
[1] Sichuan Univ, Coll Elect Engn & Informat Technol, Chengdu 610065, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
short-term load forecasting; back-propagation neural network; recurrent neural network; long-short term memory; gate-recurrent neural network; SVR MODEL;
D O I
10.3390/en12081433
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Short-term load forecasting (STLF) has been widely studied because it plays a very important role in improving the economy and security of electric system operations. Many types of neural networks have been successfully used for STLF. In most of these methods, common neural networks were used, but without a systematic comparative analysis. In this paper, we first compare the most frequently used neural networks' performance on the load dataset from the State Grid Sichuan Electric Power Company (China). Then, considering the current neural networks' disadvantages, we propose a new architecture called a gate-recurrent neural network (RNN) based on an RNN for STLF. By evaluating all the methods on our dataset, the results demonstrate that the performance of different neural network methods are related to the data time scale, and our proposed method is more accurate on a much shorter time scale, particularly when the time scale is smaller than 20 min.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Application of neural networks for short-term load forecasting
    Afkhami, Reza
    Yazdi, F. Mosalman
    2006 IEEE POWER INDIA CONFERENCE, VOLS 1 AND 2, 2006, : 24 - +
  • [2] Short-term load forecasting using dynamic neural networks
    Chogumaira, Evans N.
    Hiyama, Takashi
    Elbaset, Adel A.
    2010 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2010,
  • [3] Short-Term Net Load Forecasting with Singular Spectrum Analysis and LSTM Neural Networks
    Stratigakos, Akylas
    Bachoumis, Athanasios
    Vita, Vasiliki
    Zafiropoulos, Elias
    ENERGIES, 2021, 14 (14)
  • [4] Artificial neural networks for short-term load forecasting in microgrids environment
    Hernandez, Luis
    Baladron, Carlos
    Aguiar, Javier M.
    Carro, Belen
    Sanchez-Esguevillas, Antonio
    Lloret, Jaime
    ENERGY, 2014, 75 : 252 - 264
  • [5] Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks
    Hernandez, Luis
    Baladron, Carlos
    Aguiar, Javier M.
    Carro, Belen
    Sanchez-Esguevillas, Antonio J.
    Lloret, Jaime
    ENERGIES, 2013, 6 (03) : 1385 - 1408
  • [6] Short-Term Load Forecasting Based on Deep Neural Networks Using LSTM Layer
    Kwon, Bo-Sung
    Park, Rae-Jun
    Song, Kyung-Bin
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2020, 15 (04) : 1501 - 1509
  • [7] Wavelet transform and neural networks for short-term electrical load forecasting
    Yao, SJ
    Song, YH
    Zhang, LZ
    Cheng, XY
    ENERGY CONVERSION AND MANAGEMENT, 2000, 41 (18) : 1975 - 1988
  • [8] Improved short-term load forecasting using bagged neural networks
    Khwaja, A. S.
    Naeem, M.
    Anpalagan, A.
    Venetsanopoulos, A.
    Venkatesh, B.
    ELECTRIC POWER SYSTEMS RESEARCH, 2015, 125 : 109 - 115
  • [9] Short-Term Load Forecasting Based on Deep Neural Networks Using LSTM Layer
    Bo-Sung Kwon
    Rae-Jun Park
    Kyung-Bin Song
    Journal of Electrical Engineering & Technology, 2020, 15 : 1501 - 1509
  • [10] Combining fuzzy clustering and improved long short-term memory neural networks for short-term load forecasting
    Liu, Fu
    Dong, Tian
    Liu, Qiaoliang
    Liu, Yun
    Li, Shoutao
    ELECTRIC POWER SYSTEMS RESEARCH, 2024, 226