Orodispersible Polymer Films with the Poorly Water-Soluble Drug, Olanzapine: Hot-Melt Pneumatic Extrusion for Single-Process 3D Printing

被引:53
|
作者
Cho, Hui-Won [1 ]
Baek, Seung-Hoon [1 ]
Lee, Beom-Jin [1 ]
Jin, Hyo-Eon [1 ,2 ]
机构
[1] Ajou Univ, Coll Pharm, Suwon 16499, South Korea
[2] Ajou Univ, Res Inst Pharmaceut Sci & Technol, Suwon 16499, South Korea
基金
新加坡国家研究基金会;
关键词
three-dimensional printing technology; orodispersible film; disintegration; dissolution; hot-melt extrusion; poorly water-soluble drugs; AMORPHOUS SOLID DISPERSIONS; DISSOLUTION ENHANCEMENT; FORMULATION; RELEASE; IMPROVE; TABLETS; DESIGN; SOLUBILITY; PROFILE; SYSTEM;
D O I
10.3390/pharmaceutics12080692
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Amorphous solid dispersions (ASDs) improve the oral delivery of poorly water-soluble drugs. ASDs of olanzapine (OLZ), which have a high melting point and low solubility, are performed using a complicated process. Three-dimensional (3D) printing based on hot-melt pneumatic extrusion (HMPE) is a simplified method for producing ASDs. Unlike general 3D printing, printlet extrusion is possible without the preparation of drug-loaded filaments. By heating powder blends, direct fused deposition modeling (FDM) printing through a nozzle is possible, and this step produces ASDs of drugs. In this study, we developed orodispersible films (ODFs) loaded with OLZ as a poorly water-soluble drug. Various ratios of film-forming polymers and plasticizers were investigated to enhance the printability and optimize the printing temperature. Scanning electron microscopy (SEM) showed the surface morphology of the film for the optimization of the polymer carrier ratios. Differential scanning calorimetry (DSC) was used to evaluate thermal properties. Powder X-ray diffraction (PXRD) confirmed the physical form of the drug during printing. The 3D printed ODF formulations successfully loaded ASDs of OLZ using HMPE. Our ODFs showed fast disintegration patterns within 22 s, and rapidly dissolved and reached up to 88% dissolution within 5 min in the dissolution test. ODFs fabricated using HMPE in a single process of 3D printing increased the dissolution rates of the poorly water-soluble drug, which could be a suitable formulation for fast drug absorption. Moreover, this new technology showed prompt fabrication feasibility of various formulations and ASD formation of poorly water-soluble drugs as a single process. The immediate dissolution within a few minutes of ODFs with OLZ, an atypical antipsychotic, is preferred for drug compliance and administration convenience.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 36 条
  • [31] Biopolymer Hydroxypropyl Methylcellulose-Based Filaments Prepared by Hot-Melt Extrusion Suitable for Fused Deposition Modeling 3D Printing of Personalized Capsules
    Machackova, Jana
    Komersova, Alena
    Nevyhostena, Marie
    Svoboda, Roman
    Bartos, Martin
    Matzick, Kevin
    3D PRINTING AND ADDITIVE MANUFACTURING, 2024,
  • [32] Investigation of poly(2-ethyl-2-oxazoline) as a novel extended release polymer for hot-melt extrusion paired with fused deposition modeling 3D printing
    Feng, Sheng
    Bandari, Suresh
    Repka, Michael A.
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2022, 74
  • [33] A Proof of Concept for 3D Printing of Solid Lipid-Based Formulations of Poorly Water-Soluble Drugs to Control Formulation Dispersion Kinetics
    Vithani, Kapilkumar
    Goyanes, Alvaro
    Jannin, Vincent
    Basit, Abdul W.
    Gaisford, Simon
    Boyd, Ben J.
    PHARMACEUTICAL RESEARCH, 2019, 36 (07)
  • [34] Hot-Melt Extrusion–Based Fused Deposition Modeling 3D Printing of Atorvastatin Calcium Tablets: Impact of Shape and Infill Density on Printability and Performance
    Preethi Mandati
    Nagireddy Dumpa
    Abdullah Alzahrani
    Dinesh Nyavanandi
    Sagar Narala
    Honghe Wang
    Suresh Bandari
    Michael A. Repka
    Sandip Tiwari
    Nigel Langley
    AAPS PharmSciTech, 24
  • [35] Formulation performance window for manufacturing cellulose-based sustained-release mini-matrices of highly water-soluble drug via hot-melt extrusion technology
    Divya D. Jain
    Srushti M. Tambe
    Purnima D. Amin
    Cellulose, 2022, 29 : 3323 - 3350
  • [36] Fabrication of Taste-Masked Donut-Shaped Tablets Via Fused Filament Fabrication 3D Printing Paired with Hot-Melt Extrusion Techniques
    Honghe Wang
    Nagireddy Dumpa
    Suresh Bandari
    Thomas Durig
    Michael A. Repka
    AAPS PharmSciTech, 21