Nonlinear System Identification Using Compressed Sensing

被引:0
|
作者
Naik, Manjish [1 ]
Cochran, Douglas [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
来源
2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR) | 2012年
关键词
System Identification; Inverted Pendulum; Compressed Sensing; Sparsity; Basis Pursuit; Non-Linear;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper describes an approach to system identification based on compressive sensing and demonstrates its efficacy on a challenging classical benchmark single-input, multiple output (SIMO) mechanical system consisting of an inverted pendulum on a cart. The differential equations describing the system dynamics are to be determined from measurements of the system's input-output behavior. These equations are assumed to consist of the superposition, with unknown weights, of a small number of terms drawn from a large library of nonlinear terms. Under this assumption, compressed sensing allows the constituent library elements and their corresponding weights to be identified by decomposing a time-series signal of the system's outputs into a sparse superposition of corresponding time-series signals produced by the library components.
引用
收藏
页码:426 / 430
页数:5
相关论文
共 50 条
  • [1] System identification in the presence of outliers and random noises: A compressed sensing approach
    Xu, Weiyu
    Bai, Er-Wei
    Cho, Myung
    AUTOMATICA, 2014, 50 (11) : 2905 - 2911
  • [2] Determination of nonlinear genetic architecture using compressed sensing
    Ho, Chiu Man
    Hsu, Stephen D. H.
    GIGASCIENCE, 2015, 4
  • [3] Compressed sensing using prior information
    von Borries, R.
    Miosso, C. Jacques
    Potes, C.
    2007 2ND IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 2007, : 157 - 160
  • [4] Compressed Sensing with Nonlinear Fourier Atoms
    Cerejeiras, Paula
    Chen, Qiuhui
    Gomes, Narciso
    Hartmann, Stefan
    MODERN TRENDS IN HYPERCOMPLEX ANALYSIS, 2016, : 47 - 77
  • [5] Nonlinear compressed measurement identification based on Volterra series
    Qiu P.
    Yao X.
    Li M.
    Zhai G.
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2020, 42 (01): : 125 - 132
  • [6] Parameter identification of blade tip timing signal using compressed sensing
    Xu J.
    Qiao B.
    Teng G.
    Yang Z.
    Chen X.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2021, 42 (05):
  • [7] Hyper Spectral Imaging using Compressed Sensing
    Ramirez, Gabriel Eduardo
    Manian, Vidya
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVIII, 2012, 8390
  • [8] Compressed Sensing-Based Tag Identification Protocol for a Passive RFID System
    Kaneko, Megumi
    Hu, Wenhao
    Hayashi, Kazunori
    Sakai, Hideaki
    IEEE COMMUNICATIONS LETTERS, 2014, 18 (11) : 2023 - 2026
  • [9] Compressed sensing MRI using an interpolation-free nonlinear diffusion model
    Joy, Ajin
    Jacob, Mathews
    Paul, Joseph Suresh
    MAGNETIC RESONANCE IN MEDICINE, 2021, 85 (03) : 1681 - 1696
  • [10] Sparsity Order Estimation for Compressed Sensing System Using Sparse Binary Sensing Matrix
    Thiruppathirajan, S.
    Narayanan, Lakshmi R.
    Sreelal, S.
    Manoj, B. S.
    IEEE ACCESS, 2022, 10 : 33370 - 33392