PARAMETRIC REPRESENTATIONS OF QUASICONFORMAL MAPPINGS

被引:0
作者
Lin, Zhenlian [1 ]
Shi, Qingtian [2 ]
机构
[1] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R China
[2] Quanzhou Normal Univ, Sch Math & Comp Sci, Quanzhou 362000, Peoples R China
基金
中国国家自然科学基金;
关键词
quasiconformal mapping; Sigma(0)(K); parametric representation; area distortion theorem; Cauchy transformation; AREA DISTORTION; INEQUALITIES;
D O I
10.1007/s10473-020-0616-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we first give two simple examples to illustrate that two types of parametric representation of the family of Sigma(0)(K) have some gaps. Then we also find that the area derivative formula (1.6), which is used to estimate the area distortion of Sigma(0)(K), cannot be derived from [6], but that formula still holds for Sigma(0)(K) through our amendatory parametric representation for the one obtained by Eremenko and Hamilton.
引用
收藏
页码:1874 / 1882
页数:9
相关论文
共 15 条
[1]  
Ahlfors LV., 2006, LECT QUASICONFORMAL, V2
[2]  
Altman M., 1979, J. Integr. Equ, V1, P17
[3]  
[Anonymous], 1980, KEXUE TONGBAO
[4]   AREA DISTORTION OF QUASI-CONFORMAL MAPPINGS [J].
ASTALA, K .
ACTA MATHEMATICA, 1994, 173 (01) :37-60
[5]  
Astala K., 2009, Elliptic partial differential equations and quasiconformal mappings in the plane, V48
[6]  
Bojarski B., 2013, Infinitesimal geometry of quasiconformal and bi-lipschitz mappings in the plane
[7]   Holder mean inequalities for the complete elliptic integrals [J].
Chu, Yu-Ming ;
Qiu, Ye-Fang ;
Wang, Miao-Kun .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (07) :521-527
[8]   ON THE AREA DISTORTION BY QUASI-CONFORMAL MAPPINGS [J].
EREMENKO, A ;
HAMILTON, DH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (09) :2793-2797
[9]  
Fletcher A, 2007, QUASICONFORMAL MAPS
[10]  
Gehring FW, 1966, AREA DISTORTION QUAS