Deep Semisupervised Domain Generalization Network for Rotary Machinery Fault Diagnosis Under Variable Speed

被引:144
|
作者
Liao, Yixiao [1 ]
Huang, Ruyi [1 ]
Li, Jipu [1 ]
Chen, Zhuyun [1 ]
Li, Weihua [1 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Feature extraction; Machinery; Training; Task analysis; Deep learning; Generative adversarial networks; Adversarial learning; deep convolutional neural network; domain generalization; intelligent fault diagnosis; semisupervised learning; CONVOLUTIONAL NEURAL-NETWORK; ROTATING MACHINERY; FEATURE-EXTRACTION; BEARINGS;
D O I
10.1109/TIM.2020.2992829
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, deep learning has become a promising tool for rotary machinery fault diagnosis, but it works well only when testing samples and training samples are independent and identically distributed. In practice, rotary machinery usually works under variable speed. The change of speed leads to the variation of samples' distribution, which can significantly decrease the performance of the deep learning model. Scholars try to utilize transfer learning techniques for solving this problem. However, most exiting methods can just work well under target speed instead of all speed, while the target samples are always required in model training. In this article, a deep semisupervised domain generalization network (DSDGN) is proposed for rotary machinery fault diagnosis under variable speed, which can generalize the model to the fault diagnosis task under unseen speed. Under the setting of semisupervised domain generalization, only one fully labeled source (LS) domain data set and one totally unlabeled source (US) domain data set are available during training. To make full use of these data, the proposed method simultaneously utilizes Wasserstein generative adversarial network with gradient penalty (WGAN-GP)-based adversarial learning and pseudolabel-based semisupervised learning for training. The transmission and bearing fault diagnosis cases are utilized for evaluation. The comparative experiments indicate that the proposed method has a better performance than other state-of-the-art methods.
引用
收藏
页码:8064 / 8075
页数:12
相关论文
共 50 条
  • [41] Clustering-Guided Novel Unsupervised Domain Adversarial Network for Partial Transfer Fault Diagnosis of Rotating Machinery
    Cao, Hongru
    Shao, Haidong
    Liu, Bin
    Cai, Baoping
    Cheng, Junsheng
    IEEE SENSORS JOURNAL, 2022, 22 (14) : 14387 - 14396
  • [42] Dual-Weight Consistency-Induced Partial Domain Adaptation Network for Intelligent Fault Diagnosis of Machinery
    Kuang, Jiachen
    Xu, Guanghua
    Tao, Tangfei
    Wu, Qingqiang
    Han, Chengcheng
    Wei, Fan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [43] Extension of Speed Transform for Fault Diagnosis of Rotating Machinery Under Nonlinear Speed Variations
    Pang, Bin
    Chen, Jie
    Liu, Qiuhai
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024,
  • [44] A Deep Adversarial Transfer Learning Network for Machinery Emerging Fault Detection
    Li, Jipu
    Huang, Ruyi
    He, Guolin
    Wang, Shuhua
    Li, Guanghui
    Li, Weihua
    IEEE SENSORS JOURNAL, 2020, 20 (15) : 8413 - 8422
  • [45] An Adaptive Weighted Multiscale Convolutional Neural Network for Rotating Machinery Fault Diagnosis Under Variable Operating Conditions
    Qiao, Huihui
    Wang, Taiyong
    Wang, Peng
    Zhang, Lan
    Xu, Mingda
    IEEE ACCESS, 2019, 7 : 118954 - 118964
  • [46] A novel domain generalization network with multidomain specific auxiliary classifiers for machinery fault diagnosis under unseen working conditions
    Wang, Rui
    Huang, Weiguo
    Lu, Yixiang
    Zhang, Xiao
    Wang, Jun
    Ding, Chuancang
    Shen, Changqing
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 238
  • [47] Semisupervised Momentum Prototype Network for Gearbox Fault Diagnosis Under Limited Labeled Samples
    Zhang, Xiaolong
    Su, Zuqiang
    Hu, Xiaolin
    Han, Yan
    Wang, Shuxian
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (09) : 6203 - 6213
  • [48] Data Preprocessing Techniques in Convolutional Neural Network Based on Fault Diagnosis Towards Rotating Machinery
    Tang, Shengnan
    Yuan, Shouqi
    Zhu, Yong
    IEEE ACCESS, 2020, 8 : 149487 - 149496
  • [49] A Multidepth Step-Training Convolutional Neural Network for Power Machinery Fault Diagnosis Under Variable Loads
    Lin, Jiewei
    Gou, Xin
    Zhu, Xiaolong
    Liu, Zhisheng
    Dai, Huwei
    Liu, Xiaolei
    Zhang, Junhong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [50] Signal-Transformer: A Robust and Interpretable Method for Rotating Machinery Intelligent Fault Diagnosis Under Variable Operating Conditions
    Tang, Jian
    Zheng, Guanhui
    Wei, Chao
    Huang, Wenbin
    Ding, Xiaoxi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71