Deep Semisupervised Domain Generalization Network for Rotary Machinery Fault Diagnosis Under Variable Speed
被引:144
|
作者:
Liao, Yixiao
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Liao, Yixiao
[1
]
Huang, Ruyi
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Huang, Ruyi
[1
]
Li, Jipu
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Li, Jipu
[1
]
Chen, Zhuyun
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Chen, Zhuyun
[1
]
Li, Weihua
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Li, Weihua
[1
]
机构:
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
In recent years, deep learning has become a promising tool for rotary machinery fault diagnosis, but it works well only when testing samples and training samples are independent and identically distributed. In practice, rotary machinery usually works under variable speed. The change of speed leads to the variation of samples' distribution, which can significantly decrease the performance of the deep learning model. Scholars try to utilize transfer learning techniques for solving this problem. However, most exiting methods can just work well under target speed instead of all speed, while the target samples are always required in model training. In this article, a deep semisupervised domain generalization network (DSDGN) is proposed for rotary machinery fault diagnosis under variable speed, which can generalize the model to the fault diagnosis task under unseen speed. Under the setting of semisupervised domain generalization, only one fully labeled source (LS) domain data set and one totally unlabeled source (US) domain data set are available during training. To make full use of these data, the proposed method simultaneously utilizes Wasserstein generative adversarial network with gradient penalty (WGAN-GP)-based adversarial learning and pseudolabel-based semisupervised learning for training. The transmission and bearing fault diagnosis cases are utilized for evaluation. The comparative experiments indicate that the proposed method has a better performance than other state-of-the-art methods.
机构:
Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
Kuang, Jiachen
Xu, Guanghua
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
Xu, Guanghua
Tao, Tangfei
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
Tao, Tangfei
Wu, Qingqiang
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
Chongqing Innovat Ctr Ind Big Data Co Ltd, Natl Engn Lab Ind Big Data Applicat Technol, Chongqing 400707, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
Yu, Kun
Wang, Xuesong
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
Wang, Xuesong
Cheng, Yuhu
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
Cheng, Yuhu
Feng, Ke
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Shanxi, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
Feng, Ke
Zhang, Yongchao
论文数: 0引用数: 0
h-index: 0
机构:
Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
Zhang, Yongchao
Xing, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Innovat Ctr Ind Big Data Co Ltd, Natl Engn Lab Ind Big Data Applicat Technol, Chongqing 400707, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
机构:
Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China
Xidian Univ, State Key Lab Electromech Integrated Mfg High perf, Xian 710071, Peoples R ChinaXidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China
Zhang, Guowei
Kong, Xianguang
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China
Xidian Univ, State Key Lab Electromech Integrated Mfg High perf, Xian 710071, Peoples R ChinaXidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China
Kong, Xianguang
Ma, Hongbo
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China
Xidian Univ, State Key Lab Electromech Integrated Mfg High perf, Xian 710071, Peoples R ChinaXidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China
Ma, Hongbo
Wang, Qibin
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China
Xidian Univ, State Key Lab Electromech Integrated Mfg High perf, Xian 710071, Peoples R ChinaXidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China
Wang, Qibin
Du, Jingli
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China
Xidian Univ, State Key Lab Electromech Integrated Mfg High perf, Xian 710071, Peoples R ChinaXidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China
Du, Jingli
Wang, Jinrui
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ Sci & Technol, Coll Mech & Elect Engn, Qingdao 266590, Peoples R ChinaXidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China