Detailed characterization of diesel-ignited propane and methane dual-fuel combustion in a turbocharged direct-injection diesel engine

被引:15
作者
Polk, Andrew C. [1 ]
Gibson, Charles Michael [1 ]
Shoemaker, Nicholas T. [1 ]
Srinivasan, Kalyan Kumar [1 ]
Krishnan, Sundar Rajan [1 ]
机构
[1] Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA
关键词
Dual-fuel combustion; methane; propane; pilot ignition; fuel conversion efficiency; exhaust emissions; PERFORMANCE; COMPRESSION; EMISSIONS; LIMITS;
D O I
10.1177/0954407013487292
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents an experimental analysis of dual-fuel combustion based on the performance, emissions, and in-cylinder combustion measurements with gaseous propane or gaseous methane as the primary fuel and diesel as the pilot fuel. Two different sets of experiments were performed on a 1.9 litre four-cylinder engine at a constant engine speed of 1800r/min: first, constant-pilot-quantity experiments, allowing the primary fuel concentration and the brake mean effective pressure to vary; second, constant-brake-mean-effective-pressure experiments, allowing the percentage energy substitution of the primary fuel and the pilot quantity to vary. In the constant-pilot-quantity experiments, the apparent heat release rate profiles showed the influence of the preignition chemistry and gaseous fuel burn rates on the dual-fuel combustion phasing and duration, the fuel conversion efficiency, and the engine-out emissions. With a fixed pilot quantity, the nitrogen oxide emissions were either reduced or unaffected while the smoke levels were increased or unaffected with increasing primary fuel concentration. The carbon monoxide and total unburned hydrocarbon emissions decreased and the fuel conversion efficiency increased as the pilot quantity or the primary fuel concentration was increased. Overall, diesel-propane combustion yielded higher carbon monoxide emissions, lower total unburned hydrocarbon emissions, and slightly higher fuel conversion efficiencies than diesel-methane combustion did. In the constant-brake-mean-effective-pressure experiments, at a brake mean effective pressure of 2.5 bar, diesel-propane and diesel-methane combustion behaved very similarly, the primary differences being in the preignition chemistry and the ignition delay trends. At a brake mean effective pressure of 2.5 bar, the nitrogen oxide and smoke emissions were simultaneously reduced while the carbon monoxide and total unburned hydrocarbon emissions were increased. At a brake mean effective pressure of 10 bar (a baseline diesel fuel conversion efficiency of 38%), diesel-propane fueling was prone to rapid earlier combustion while diesel-methane combustion was slower. For diesel-methane combustion at a brake mean effective pressure of 10 bar, the fuel conversion efficiency decreased to 37.1% as the percentage energy substitution was increased to 51%. For diesel-propane combustion at a brake mean effective pressure of 10 bar, the fuel conversion efficiency increased to 39% as the percentage energy substitution was increased to 46%. At high-brake-mean-effective-pressure-high-percentage-energy-substitution and large-pilot-quantity-high-equivalence-ratio conditions, diesel-propane combustion showed an apparent departure from the classical three-phase dual-fuel combustion to a distributed volumetric combustion process that resembled a diesel-regulated homogenous-charge-compression-ignition-like combustion process.
引用
收藏
页码:1255 / 1272
页数:18
相关论文
共 50 条
  • [41] Quasi-Dimensional Multi-Zone Modeling of Methane-Diesel Dual-Fuel Combustion
    Xu, Shuonan
    Filipi, Zoran
    FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2020, 6
  • [42] Effect of swirl ratio on NG/diesel dual-fuel combustion at low to high engine load conditions
    Yousefi, Amin
    Guo, Hongsheng
    Birouk, Madjid
    APPLIED ENERGY, 2018, 229 : 375 - 388
  • [43] Diesel direct injection and EGR optimization for a syngas-diesel dual-fuel generator operating at constant load
    Arslan, Aysegul
    Dev, Shouvik
    Stevenson, David
    Butler, James
    Guo, Hongsheng
    Birouk, Madjid
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 77 : 84 - 100
  • [44] ANALYSIS OF IGNITION BEHAVIOR IN A TURBOCHARGED DIRECT INJECTION DUAL FUEL ENGINE USING PROPANE AND METHANE AS PRIMARY FUELS
    Polk, A. C.
    Gibson, C. M.
    Shoemaker, N. T.
    Srinivasan, K. K.
    Krishnan, S. R.
    PROCEEDINGS OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF), 2011, : 177 - 187
  • [45] An investigation of euro diesel-hydrogen dual-fuel combustion at different speeds in a small turbojet engine
    Akcay, Ismail Hakki Hakki
    Gurbuz, Habib
    Akcay, Husameddin
    Aldemir, Mustafa
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2021, 93 (04) : 701 - 710
  • [46] Modeling on blend gasoline/diesel fuel combustion in a direct injection diesel engine
    Li, J.
    Yang, W. M.
    An, H.
    Chou, S. K.
    APPLIED ENERGY, 2015, 160 : 777 - 783
  • [47] Split injection strategies for a high-pressure hydrogen direct injection in a small-bore dual-fuel diesel engine
    Liu, Xinyu
    Yang, Lynette
    Chan, Qing Nian
    Kook, Sanghoon
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 57 : 904 - 917
  • [48] Improved combustion and emission characteristics of ethylene glycol/diesel dual-fuel engine by port injection timing and direct injection timing
    Zhang, Peng
    He, Jingjing
    Chen, Hao
    Zhao, Xuan
    Geng, Limin
    FUEL PROCESSING TECHNOLOGY, 2020, 199 (199)
  • [49] A phenomenological combustion analysis of a dual-fuel natural-gas diesel engine
    Xu, Shuonan
    Anderson, David
    Hoffman, Mark
    Prucka, Robert
    Filipi, Zoran
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2017, 231 (01) : 66 - 83
  • [50] An experimental and numerical study on diesel injection split of a natural gas/diesel dual-fuel engine at a low engine load
    Yousefi, Amin
    Guo, Hongsheng
    Birouk, Madjid
    FUEL, 2018, 212 : 332 - 346