Low-Light Image Enhancement via Pair of Complementary Gamma Functions by Fusion

被引:20
|
作者
Li, Changli [1 ]
Tang, Shiqiang [1 ]
Yan, Jingwen [2 ]
Zhou, Teng [2 ]
机构
[1] Hohai Univ, Coll Comp & Informat Engn, Adv Signal & Image Proc Learning & Engn Lab, Nanjing 211100, Peoples R China
[2] Shantou Univ, Coll Engn, Shantou 515063, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷 / 08期
基金
中国国家自然科学基金;
关键词
Gamma correction (GC); CRT gamma; pair of complementary gamma functions; low-light image enhancement; image dehazing; underwater image restoration; QUALITY ASSESSMENT; REAL-TIME; RETINEX; MODEL; EQUALIZATION;
D O I
10.1109/ACCESS.2020.3023485
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Enhanced images by the traditional gamma correction (GC) method still have low contrast within high illuminance regions. In order to enhance the visibility in dark regions and simultaneously achieve high contrast in bright regions for low-light images, this paper proposes a novel method via a pair of complementary gamma functions (PCGF) by image fusion. We first define PCGF and then show its outstanding potential for low-light image enhancement by some preliminary experimental results. In order to release its performance and verify its effectiveness, we further design a simple enhancement method for low-light images based on it by an elaborately designed fusion strategy. Two input images for fusion are derived from the enhanced image by PCGF and that by proposed sharpening method, respectively. Experiments show that our proposed method can significantly enhance the detail and improve the contrast of low-light image. The qualitative experiment results show that the proposed method is effective and the comparative quantitative assessment shows that it outperforms other state-of-the-art methods.
引用
收藏
页码:169887 / 169896
页数:10
相关论文
共 50 条
  • [31] Low-light image enhancement based on Retinex decomposition and adaptive gamma correction
    Yang, Jingyu
    Xu, Yuwei
    Yue, Huanjing
    Jiang, Zhongyu
    Li, Kun
    IET IMAGE PROCESSING, 2021, 15 (05) : 1189 - 1202
  • [32] RCFNC: a resolution and contrast fusion network with ConvLSTM for low-light image enhancement
    Li, Canlin
    Song, Shun
    Wang, Xinyue
    Liu, Yan
    Bi, Lihua
    VISUAL COMPUTER, 2024, 40 (04) : 2793 - 2806
  • [33] Benchmarking Low-Light Image Enhancement and Beyond
    Liu, Jiaying
    Xu, Dejia
    Yang, Wenhan
    Fan, Minhao
    Huang, Haofeng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (04) : 1153 - 1184
  • [34] ITRE: Low-light image enhancement based on illumination transmission ratio estimation
    Wang, Yu
    Wang, Yihong
    Liu, Tong
    Li, Jinyu
    Sui, Xiubao
    Chen, Qian
    KNOWLEDGE-BASED SYSTEMS, 2024, 303
  • [35] Low-light image enhancement with knowledge distillation
    Li, Ziwen
    Wang, Yuehuan
    Zhang, Jinpu
    NEUROCOMPUTING, 2023, 518 : 332 - 343
  • [36] Low-Light Image Enhancement With Regularized Illumination Optimization and Deep Noise Suppression
    Guo, Yu
    Lu, Yuxu
    Liu, Ryan Wen
    Yang, Meifang
    Chui, Kwok Tai
    IEEE ACCESS, 2020, 8 (145297-145315): : 145297 - 145315
  • [37] CodedBGT: Code Bank-Guided Transformer for Low-Light Image Enhancement
    Ye, Dongjie
    Chen, Baoliang
    Wang, Shiqi
    Kwong, Sam
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9880 - 9891
  • [38] Low-Light Image Enhancement via the Absorption Light Scattering Model
    Wang, Yun-Fei
    Liu, He-Ming
    Fu, Zhao-Wang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (11) : 5679 - 5690
  • [39] A deep Retinex network for underwater low-light image enhancement
    Ji, Kai
    Lei, Weimin
    Zhang, Wei
    MACHINE VISION AND APPLICATIONS, 2023, 34 (06)
  • [40] Underwater image enhancement via multi-scale fusion and adaptive color-gamma correction in low-light conditions
    Zhang, Dan
    He, Zongxin
    Zhang, Xiaohuan
    Wang, Zhen
    Ge, Wenyi
    Shi, Taian
    Lin, Yi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126