The Stokes Paradox in Inhomogeneous Elastostatics

被引:4
作者
Ferone, Adele [1 ]
Russo, Remigio [1 ]
Tartaglione, Alfonsina [1 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dept Math & Phys, Caserta, Italy
关键词
Inhomogeneous elasticity; Two-dimensional exterior domains; Existence and uniqueness theorems; Stokes paradox; ELLIPTIC-SYSTEMS; UNIQUENESS; EXISTENCE;
D O I
10.1007/s10659-020-09788-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We prove that the displacement problem of inhomogeneous elastostatics in a two-dimensional exterior Lipschitz domain has a unique solution with finite Dirichlet integral u, vanishing uniformly at infinity if and only if the boundary datum satisfies a suitable compatibility condition (Stokes paradox). Moreover, we prove that it is unique under the sharp condition u = o(log r) and decays uniformly at infinity with a rate depending on the elasticities. In particular, if these last ones tend to a homogeneous state at large distance, then u = O(r(-a)), for every alpha < 1.
引用
收藏
页码:35 / 52
页数:18
相关论文
共 23 条
[11]  
John F., 1955, Plane waves and spherical means applied to partial differential equations
[12]  
Kenig C.E., 1985, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V12, P191
[13]  
Kondrat'ev V. A., 1988, USP MAT NAUK, V43, p[55, 65]
[14]  
Meyers N.G., 1963, Ann. Scuola Norm. Super. Pisa Cl. Sci., V17, P189
[15]  
Piccinini L., 1973, ANN SC NORM SUPER PI, V27, P417
[16]  
Piccinini L.C., 1972, Ann. Scuola Norm. Super. Pisa Cl. Sci., V26, P391
[17]   Strong Uniqueness Theorems and the Phragmen-Lindelof Principle in Nonhomogeneous Elastostatics [J].
Russo, Antonio ;
Tartaglione, Alfonsina .
JOURNAL OF ELASTICITY, 2011, 102 (02) :133-149
[18]   On the contact problem of classical elasticity [J].
Russo, Antonio ;
Tartaglione, Alfonsina .
JOURNAL OF ELASTICITY, 2010, 99 (01) :19-38
[19]   The Plane Exterior Boundary-Value Problem for Nonhomogeneous Fluids [J].
Russo, Remigio ;
Tartaglione, Alfonsina .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (01)
[20]   On the exterior two-dimensional Dirichlet problem for elliptic equations [J].
Russo R. ;
Simader C.G. .
Ricerche di Matematica, 2009, 58 (2) :315-328