The Stokes Paradox in Inhomogeneous Elastostatics

被引:4
作者
Ferone, Adele [1 ]
Russo, Remigio [1 ]
Tartaglione, Alfonsina [1 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dept Math & Phys, Caserta, Italy
关键词
Inhomogeneous elasticity; Two-dimensional exterior domains; Existence and uniqueness theorems; Stokes paradox; ELLIPTIC-SYSTEMS; UNIQUENESS; EXISTENCE;
D O I
10.1007/s10659-020-09788-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We prove that the displacement problem of inhomogeneous elastostatics in a two-dimensional exterior Lipschitz domain has a unique solution with finite Dirichlet integral u, vanishing uniformly at infinity if and only if the boundary datum satisfies a suitable compatibility condition (Stokes paradox). Moreover, we prove that it is unique under the sharp condition u = o(log r) and decays uniformly at infinity with a rate depending on the elasticities. In particular, if these last ones tend to a homogeneous state at large distance, then u = O(r(-a)), for every alpha < 1.
引用
收藏
页码:35 / 52
页数:18
相关论文
共 23 条
[1]  
[Anonymous], 2002, APPL PICARD LEFSCHET
[2]  
Campanato S., 1980, SISTEMI ELLITTICI FO
[3]   CONTINUITY OF SOLUTIONS OF UNIFORMLY ELLIPTIC-EQUATIONS IN R2 [J].
CHANILLO, S ;
LI, YY .
MANUSCRIPTA MATHEMATICA, 1992, 77 (04) :415-433
[4]  
De Giorgi E., 1968, B UNIONE MAT ITAL, V1, P135
[5]   GREEN'S MATRICES OF SECOND ORDER ELLIPTIC SYSTEMS WITH MEASURABLE COEFFICIENTS IN TWO DIMENSIONAL DOMAINS [J].
Dong, Hongjie ;
Kim, Seick .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (06) :3303-3323
[6]  
Duvaut G., 1976, GRUNDLEHREN MATH WIS, V219, pxvi+397
[7]  
Galdi GP, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-09620-9
[8]   EXISTENCE, UNIQUENESS AND LQ-ESTIMATES FOR THE STOKES PROBLEM IN AN EXTERIOR DOMAIN [J].
GALDI, GP ;
SIMADER, CG .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 112 (04) :291-318
[9]  
Giusti E., 1994, METODI DIRETTI NEL C
[10]  
Gurtin M., 1972, LINEAR THEORY ELASTI