An extensive comparison of species-abundance distribution models

被引:64
|
作者
Baldridge, Elita [1 ,2 ]
Harris, David J. [3 ]
Xiao, Xiao [1 ,2 ,4 ,5 ]
White, Ethan P. [1 ,2 ,3 ,6 ]
机构
[1] Utah State Univ, Dept Biol, Logan, UT 84322 USA
[2] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA
[3] Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL 32611 USA
[4] Univ Maine, Sch Biol & Ecol, Orono, ME USA
[5] Univ Maine, Senator George J Mitchell Ctr Sustainabil Solut, Orono, ME USA
[6] Univ Florida, Inst Informat, Gainesville, FL 32611 USA
来源
PEERJ | 2016年 / 4卷
基金
美国国家科学基金会;
关键词
Species-abundance distribution; Informatics; Commonness; Rarity; Citizen science; Animals; Plants; Community structure; MAXIMUM-ENTROPY; NEUTRAL THEORY; PATTERNS;
D O I
10.7717/peerj.2823
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A number of different models have been proposed as descriptions of the species abundance distribution (SAD). Most evaluations of these models use only one or two models, focus on only a single ecosystem or taxonomic group, or fail to use appropriate statistical methods. We use likelihood and AIC to compare the fit of four of the most widely used models to data on over 16,000 communities from a diverse array of taxonomic groups and ecosystems. Across all datasets combined the log series, Poisson lognormal, and negative binomial all yield similar overall fits to the data. Therefore, when correcting for differences in the number of parameters the log series generally provides the best fit to data. Within individual datasets some other distributions performed nearly as well as the log-series even after correcting for the number of parameters. The Zipf distribution is generally a poor characterization of the SAD.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Response of species abundance distribution pattern of alpine meadow community to sampling scales
    Liu, Minxia
    Zhu, Lei
    Ma, Yibo
    Zhang, Yaya
    Xu, Lu
    Wang, Mingxing
    Liu, Cheng
    RANGELAND JOURNAL, 2022, 44 (01) : 13 - 24
  • [42] Inferring species abundance distribution across spatial scales
    Zillio, Tommaso
    He, Fangliang
    OIKOS, 2010, 119 (01) : 71 - 80
  • [43] Hierarchical Species Distribution Models
    Trevor J. Hefley
    Mevin B. Hooten
    Current Landscape Ecology Reports, 2016, 1 (2) : 87 - 97
  • [44] Species abundance patterns: the problem of testing stochastic models
    Bersier, LF
    Sugihara, G
    JOURNAL OF ANIMAL ECOLOGY, 1997, 66 (05) : 769 - 774
  • [45] Extensive comparison of physical models for photovoltaic power forecasting
    Mayer, Martin Janos
    Grof, Gyula
    APPLIED ENERGY, 2021, 283
  • [46] Diversity, distribution and abundance of species in rocky intertidal assemblages
    Camus, Patricio A.
    REVISTA DE BIOLOGIA MARINA Y OCEANOGRAFIA, 2008, 43 (03): : 615 - 627
  • [47] Models to predict the distribution and abundance of breeding ducks in Canada
    Barker, Nicole K. S.
    Cumming, Steven G.
    Darveau, Marcel
    AVIAN CONSERVATION AND ECOLOGY, 2014, 9 (02)
  • [48] Species traits affect the performance of species distribution models for plants in southern California
    Syphard, Alexandra D.
    Franklin, Janet
    JOURNAL OF VEGETATION SCIENCE, 2010, 21 (01) : 177 - 189
  • [49] Abundance distribution of common and rare plant species of Brazilian savannas along a seasonality gradient
    Silva, Igor Aurelio
    Cianciaruso, Marcus Vinicius
    Batalha, Marco Antonio
    ACTA BOTANICA BRASILICA, 2010, 24 (02) : 407 - 413
  • [50] Regional species richness of families and the distribution of abundance and rarity in a local community of forest Hymenoptera
    Ulrich, W
    ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY, 2005, 28 (02): : 71 - 76