An extensive comparison of species-abundance distribution models

被引:64
|
作者
Baldridge, Elita [1 ,2 ]
Harris, David J. [3 ]
Xiao, Xiao [1 ,2 ,4 ,5 ]
White, Ethan P. [1 ,2 ,3 ,6 ]
机构
[1] Utah State Univ, Dept Biol, Logan, UT 84322 USA
[2] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA
[3] Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL 32611 USA
[4] Univ Maine, Sch Biol & Ecol, Orono, ME USA
[5] Univ Maine, Senator George J Mitchell Ctr Sustainabil Solut, Orono, ME USA
[6] Univ Florida, Inst Informat, Gainesville, FL 32611 USA
来源
PEERJ | 2016年 / 4卷
基金
美国国家科学基金会;
关键词
Species-abundance distribution; Informatics; Commonness; Rarity; Citizen science; Animals; Plants; Community structure; MAXIMUM-ENTROPY; NEUTRAL THEORY; PATTERNS;
D O I
10.7717/peerj.2823
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A number of different models have been proposed as descriptions of the species abundance distribution (SAD). Most evaluations of these models use only one or two models, focus on only a single ecosystem or taxonomic group, or fail to use appropriate statistical methods. We use likelihood and AIC to compare the fit of four of the most widely used models to data on over 16,000 communities from a diverse array of taxonomic groups and ecosystems. Across all datasets combined the log series, Poisson lognormal, and negative binomial all yield similar overall fits to the data. Therefore, when correcting for differences in the number of parameters the log series generally provides the best fit to data. Within individual datasets some other distributions performed nearly as well as the log-series even after correcting for the number of parameters. The Zipf distribution is generally a poor characterization of the SAD.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Invariance in species-abundance distributions
    Sizling, Arnost L.
    Storch, David
    Reif, Jiri
    Gaston, Kevin J.
    THEORETICAL ECOLOGY, 2009, 2 (02) : 89 - 103
  • [2] Species-Abundance Distribution Patterns of Plant Communities in the Gurbantunggut Desert, China
    Zang, Zexuan
    Zeng, Yong
    Wang, Dandan
    Shi, Fengzhi
    Dong, Yiyang
    Liu, Na
    Liang, Yuejia
    SUSTAINABILITY, 2022, 14 (20)
  • [3] A comparative analysis of alternative approaches to fitting species-abundance models
    Connolly, Sean R.
    Thibaut, Loic M.
    JOURNAL OF PLANT ECOLOGY, 2012, 5 (01) : 32 - 45
  • [4] A meta-analysis of species-abundance distributions
    Ulrich, Werner
    Ollik, Marcin
    Ugland, Karl Inne
    OIKOS, 2010, 119 (07) : 1149 - 1155
  • [5] Which Models Are Appropriate for Six Subtropical Forests: Species-Area and Species-Abundance Models
    Wei, Shi Guang
    Li, Lin
    Chen, Zhen Cheng
    Lian, Ju Yu
    Lin, Guo Jun
    Huang, Zhong Liang
    Yin, Zuo Yun
    PLOS ONE, 2014, 9 (04):
  • [6] Species-abundance models for brachiopods across the Ordovician-Silurian boundary of South China
    Huang, Bing
    Zhan, Renbin
    ESTONIAN JOURNAL OF EARTH SCIENCES, 2014, 63 (04) : 240 - 243
  • [7] Species-abundance distributions under colored environmental noise
    Fung, Tak
    O'Dwyer, James P.
    Chisholm, Ryan A.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2017, 74 (1-2) : 289 - 311
  • [8] Species-Abundance Models for the Early Postfire Succession of Subalpine Shrub Grassland
    Wang, Wei
    Liao, Min-Chun
    Tzeng, Hsy-Yu
    FIRE-SWITZERLAND, 2024, 7 (01):
  • [9] The shape of a species' spatial abundance distribution
    Conlisk, John
    Conlisk, Erin
    Kassim, Abd. Rahman
    Billick, Ian
    Harte, John
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2012, 21 (12): : 1167 - 1178
  • [10] Universal scaling of species-abundance distributions across multiple scales
    Rosindell, James
    Cornell, Stephen J.
    OIKOS, 2013, 122 (07) : 1101 - 1111