Operator splitting for nonautonomous delay equations

被引:9
|
作者
Batkai, Andras [1 ]
Csomos, Petra [2 ]
Farkas, Balint [1 ]
机构
[1] Eotvos Lorand Univ, Inst Math, H-1117 Budapest, Hungary
[2] Leopold Franzens Univ Innsbruck, Inst Math, A-6020 Innsbruck, Austria
关键词
Operator splitting; Delay equation;
D O I
10.1016/j.camwa.2012.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a general product formula for the solution of nonautonomous abstract delay equations. After having shown the convergence we obtain estimates on the order of convergence for differentiable history functions. Finally, the theoretical results are demonstrated by some typical numerical examples. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:315 / 324
页数:10
相关论文
共 50 条
  • [41] The analysis of operator splitting for the Gardner equation
    Zhao, Jingjun
    Zhan, Rui
    Xu, Yang
    APPLIED NUMERICAL MATHEMATICS, 2019, 144 : 151 - 175
  • [42] A modified iterated operator splitting method
    Farago, Istvan
    APPLIED MATHEMATICAL MODELLING, 2008, 32 (08) : 1542 - 1551
  • [43] A third accurate operator splitting method
    Jia, Hongen
    Li, Kaitai
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (1-2) : 387 - 396
  • [44] Operator splitting methods for degenerate convection–diffusion equations II: numerical examples with emphasis on reservoir simulation and sedimentation
    Helge Holden
    Kenneth Hvistendahl Karlsen
    Knut-Andreas Lie
    Computational Geosciences, 2000, 4 : 287 - 322
  • [45] On the accuracy of operator splitting for the monodomain model of electrophysiology
    Schroll, H. J.
    Lines, G. T.
    Tveito, A.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (06) : 871 - 885
  • [46] Operator splitting and error analysis in malaria modeling
    Mandal, Parna
    Farago, Istvan
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 410
  • [47] An analysis of operator splitting techniques in the stiff case
    Sportisse, B
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 161 (01) : 140 - 168
  • [48] OSQP: an operator splitting solver for quadratic programs
    Bartolomeo Stellato
    Goran Banjac
    Paul Goulart
    Alberto Bemporad
    Stephen Boyd
    Mathematical Programming Computation, 2020, 12 : 637 - 672
  • [49] A SURVEY ON OPERATOR SPLITTING AND DECOMPOSITION OF CONVEX PROGRAMS
    Lenoir, Arnaud
    Mahey, Philippe
    RAIRO-OPERATIONS RESEARCH, 2017, 51 (01) : 17 - 41
  • [50] An a posteriori - A priori analysis of multiscale operator splitting
    Estep, D.
    Ginting, V.
    Ropp, D.
    Shadid, J. N.
    Tavener, S.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) : 1116 - 1146