Identifying influential spreaders in complex networks by propagation probability dynamics

被引:51
|
作者
Chen, Duan-Bing [1 ,2 ,3 ]
Sun, Hong-Liang [4 ,5 ]
Tang, Qing [6 ]
Tian, Sheng-Zhao [1 ]
Xie, Mei [3 ]
机构
[1] Univ Elect Sci & Technol China, Big Data Res Ctr, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 611731, Sichuan, Peoples R China
[3] Univ Elect Sci & Technol China, Ctr Digital Culture & Media, Chengdu 611731, Sichuan, Peoples R China
[4] Nanjing Univ Finance & Econ, Sch Informat Engn, Nanjing 210046, Jiangsu, Peoples R China
[5] Univ Nottingham, Sch Comp Sci, NVIDIA Joint Lab Mixed Real, Int Doctoral Innovat Ctr, Ningbo 315100, Zhejiang, Peoples R China
[6] Petro China Southwest Oil & Gas Co, Commun & Informat Technol Ctr, Chengdu 610051, Sichuan, Peoples R China
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
IDENTIFICATION; CENTRALITY; INDEX; NODES;
D O I
10.1063/1.5055069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Numerous well-known processes of complex systems such as spreading and cascading are mainly affected by a small number of critical nodes. Identifying influential nodes that lead to broad spreading in complex networks is of great theoretical and practical importance. Since the identification of vital nodes is closely related to propagation dynamics, a novel method DynamicRank that employs the probability model to measure the ranking scores of no des is suggested. The influence of a node can be denoted by the sum of probability scores of its i order neighboring nodes. This simple yet effective method provides a new idea to understand the identification of vital nodes in propagation dynamics. Experimental studies on both Susceptible-Infected-Recovered and Susceptible-Infected-Susceptible models in real networks demonstrate that it outperforms existing methods such as Coreness, H-index, LocalRank, Betweenness, and Spreading Probability in terms of the Kendall tau coefficient. The linear time complexity enables it to be applied to real large-scale networks with tens of thousands of nodes and edges in a short time. Published under license by AIP Publishing.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Identifying influential spreaders in complex networks based on improved k-shell method
    Wang, Min
    Li, Wanchun
    Guo, Yuning
    Peng, Xiaoyan
    Li, Yingxiang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 554
  • [32] Identifying influential nodes in complex networks based on spreading probability
    Ai, Jun
    He, Tao
    Su, Zhan
    Shang, Lihui
    CHAOS SOLITONS & FRACTALS, 2022, 164
  • [33] Identifying Influential Spreaders in Complex Networks Based on Weighted Mixed Degree Decomposition Method
    Raamakirtinan, S.
    Livingston, L. M. Jenila
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 127 (03) : 2103 - 2119
  • [34] Identifying Multiple Influential Spreaders in Complex Networks by Considering the Dispersion of Nodes
    Tao, Li
    Liu, Mutong
    Zhang, Zili
    Luo, Liang
    FRONTIERS IN PHYSICS, 2022, 9
  • [35] Semi-global triangular centrality measure for identifying the influential spreaders from undirected complex networks
    Namtirtha, Amrita
    Dutta, Biswanath
    Dutta, Animesh
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 206
  • [36] Identification of influential spreaders in complex networks
    Kitsak, Maksim
    Gallos, Lazaros K.
    Havlin, Shlomo
    Liljeros, Fredrik
    Muchnik, Lev
    Stanley, H. Eugene
    Makse, Hernan A.
    NATURE PHYSICS, 2010, 6 (11) : 888 - 893
  • [37] Identifying influential spreaders in large-scale networks based on evidence theory
    Liu, Dong
    Nie, Hao
    Zhao, Jing
    Wang, Qingchen
    NEUROCOMPUTING, 2019, 359 : 466 - 475
  • [38] Identifying Influential Spreaders Using Local Information
    Li, Zhe
    Huang, Xinyu
    MATHEMATICS, 2023, 11 (06)
  • [39] Identifying the influential spreaders in multilayer interactions of online social networks
    Al-Garadi, Mohammed Ali
    Varathan, Kasturi Dewi
    Ravana, Sri Devi
    Ahmed, Ejaz
    Chang, Victor
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 31 (05) : 2721 - 2735
  • [40] A novel weight neighborhood centrality algorithm for identifying influential spreaders in complex networks
    Wang, Junyi
    Hou, Xiaoni
    Li, Kezan
    Ding, Yong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 475 : 88 - 105