Validation of velocity map imaging conditions over larger areas

被引:15
|
作者
Reid, Mike [1 ,2 ,3 ]
Koehler, Sven P. K. [1 ,2 ,3 ]
机构
[1] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Photon Sci Inst, Manchester M13 9PL, Lancs, England
[3] Univ Manchester, Dalton Cumbrian Facil, Moor Row CA24 3HA, Whitehaven, England
关键词
DYNAMICS; PHOTODISSOCIATION; PHOTOELECTRON; SPECTROSCOPY; PHOTOLYSIS; ELECTRONS; IONS; O-2; NM;
D O I
10.1063/1.4798646
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We have established through simulations and experiments the area over which Velocity Map Imaging (VMI) conditions prevail. We designed a VMI setup in which we can vary the ionization position perpendicular to the center axis of the time-of-flight spectrometer. We show that weak extraction conditions are far superior over standard three-plate setups if the aim is to increase the ionization volume without distorting VMI conditions. This is important for a number of crossed molecular beam experiments that already utilize weak extraction conditions, but to a greater extent for surface studies where fragments are desorbed or scattered off a surface in all directions. Our results on the dissociation of NO2 at 226 nm show that ionization of the fragments can occur up to +/- 5.5 mm away from the center axis of the time-of-flight spectrometer without affecting resolution or arrival position. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4798646]
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Towards universal detection with 213 nm for velocity map imaging
    Singh, Sumitra
    Kawade, Monali
    Chowdhury, Prahlad Roy
    Patwari, G. Naresh
    JOURNAL OF CHEMICAL SCIENCES, 2023, 135 (03)
  • [22] Clustering and multiphoton effects in velocity map imaging of methyl chloride
    Vinklarek, I. S.
    Rakovsky, J.
    Poterya, V
    Farnik, M.
    MOLECULAR PHYSICS, 2021, 119 (1-2)
  • [23] A cryogenic cylindrical ion trap velocity map imaging spectrometer
    Hua, Zefeng
    Feng, Shaowen
    Zhou, Zhengfang
    Liang, Hao
    Chen, Yang
    Zhao, Dongfeng
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (01)
  • [24] Transfer-matrix-based method for an analytical description of velocity-map-imaging spectrometers
    Harb, M. M.
    Cohen, S.
    Papalazarou, E.
    Lepine, F.
    Bordas, C.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (12)
  • [25] A compact design for velocity-map imaging of energetic electrons and ions
    Schomas, D.
    Rendler, N.
    Krull, J.
    Richter, R.
    Mudrich, M.
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (01)
  • [26] A velocity map imaging mass spectrometer for photofragments of fast ion beams
    Johnston, M. David
    Pearson, Wright L., III
    Wang, Greg
    Metz, Ricardo B.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (01)
  • [27] A mini-photofragment translational spectrometer with ion velocity map imaging using low voltage acceleration
    Qi, Wenke
    Jiang, Pan
    Lin, Dan
    Chi, Xiaoping
    Cheng, Min
    Du, Yikui
    Zhu, Qihe
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (01)
  • [28] Nonlinear response of phosphor screen used in velocity map imaging spectrometry
    Li, Yu-Fan
    Zhao, Dong-Mei
    Zhou, Wen-Chang
    Qian, Dong-Bin
    Yang, Jie
    Zhang, Shao-Feng
    Zhu, Xiao-Long
    Ma, Xin-Wen
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2019, 442 : 23 - 28
  • [29] Transferring the attoclock technique to velocity map imaging
    Weger, Matthias
    Maurer, Jochen
    Ludwig, Andre
    Gallmann, Lukas
    Keller, Ursula
    OPTICS EXPRESS, 2013, 21 (19): : 21981 - 21990
  • [30] Improved sliced velocity map imaging apparatus optimized for H photofragments
    Ryazanov, Mikhail
    Reisler, Hanna
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (14)