Molecular dynamics simulations of structural and melting properties of Li2SiO3

被引:9
作者
Ma, Shenggui [1 ]
Li, Shichang [1 ]
Gao, Tao [1 ,3 ]
Shen, Yanhong [1 ]
Chen, Xiaojun [2 ]
Xiao, Chengjian [2 ]
Lu, Tiecheng [3 ]
机构
[1] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Sichuan, Peoples R China
[2] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621900, Peoples R China
[3] Sichuan Univ, Coll Phys Sci & Technol, Minist Educ, Key Lab High Energy Dens Phys & Technol, Chengdu 610065, Sichuan, Peoples R China
关键词
Li2SiO3; Molecular dynamics; Nanomaterial; Melting temperature; LITHIUM-ION BATTERIES; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIAL; NANOPARTICLES; SILICATES; PARTICLES; MECHANISM; LI4SIO4; ROUTE;
D O I
10.1016/j.ceramint.2017.11.128
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Molecular dynamics simulations have been performed to investigate the structural and melting properties of single crystal and nanocrystal Li2SiO3. The simulated results of both lattice parameters and enthalpy as a function of temperature for single crystal are well consistent with the experimental values. The radial distribution functions and mean square displacement are utilized to analyze and characterize the structural evolution and melting behaviors in simulations. The models of nanocrystal Li2SiO3 are constructed by the Voronoi tessellation techniques. We predict that the melting temperature of single crystal Li2SiO3 is 1500 K, in close agreement with experiment. For nanocrystal Li2SiO3, the results indicate that the melting temperature decreases with the grain size decreasing, and drops to the range of 700-850 K.
引用
收藏
页码:3381 / 3387
页数:7
相关论文
共 50 条
[41]   Monoclinic β-Li2TiO3 nanocrystalline particles employing novel urea assisted solid state route: Synthesis, characterization and sintering behavior [J].
Tripathi, Biranchi M. ;
Mohanty, Trupti ;
Prakash, Deep ;
Tyagi, A. K. ;
Sinha, P. K. .
JOURNAL OF NUCLEAR MATERIALS, 2017, 490 :167-173
[42]   Kinetic and reaction mechanism of CO2 sorption on Li4SiO4:: Study of the particle size effect [J].
Venegas, Miriam J. ;
Fregoso-Israel, Esteban ;
Escamilla, Raul ;
Pfeiffer, Heriberto .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (08) :2407-2412
[43]  
Vollenkle H., 1981, MATERIALS, V154, P77
[44]   Fabrication of nanostructured Li2TiO3 ceramic pebbles as tritium breeders using powder particles synthesised via a CTAB-assisted method [J].
Wang, Hailiang ;
Yang, Mao ;
Gong, Yichao ;
Feng, Lan ;
Dang, Chen ;
Shi, Yanli ;
Shi, Qiwu ;
Wei, Jianjun ;
Liao, Zhijun ;
Lu, Tiecheng .
CERAMICS INTERNATIONAL, 2017, 43 (07) :5680-5686
[45]   Li2SiO3@Li4Ti5O12 nanocomposites as anode material for lithium-ion batteries [J].
Wang, Qiufen ;
Lu, Mengwei ;
Miao, Juan .
MATERIALS TECHNOLOGY, 2016, 31 (08) :471-476
[46]   Developments in nanostructured cathode materials for high-performance lithium-ion batteries [J].
Wang, Ying ;
Cao, Guozhong .
ADVANCED MATERIALS, 2008, 20 (12) :2251-2269
[47]   Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation [J].
Yamakov, V ;
Wolf, D ;
Phillpot, SR ;
Mukherjee, AK ;
Gleiter, H .
NATURE MATERIALS, 2004, 3 (01) :43-47
[48]   Sol-gel route to nanocrystalline lithium metasilicate particles [J].
Zhang, Bo ;
Nieuwoudt, Michel ;
Easteal, Allan J. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2008, 91 (06) :1927-1932
[49]   Ion conducting Li2SiO3-coated lithium-rich layered oxide exhibiting high rate capability and low polarization [J].
Zhao, Enyue ;
Liu, Xiangfeng ;
Zhao, Hu ;
Xiao, Xiaoling ;
Hu, Zhongbo .
CHEMICAL COMMUNICATIONS, 2015, 51 (44) :9093-9096
[50]   Modeling of the Melting Point, Debye Temperature, Thermal Expansion Coefficient, and the Specific Heat of Nanostructured Materials [J].
Zhu, Y. F. ;
Lian, J. S. ;
Jiang, Q. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (39) :16896-16900