Molecular dynamics simulations of structural and melting properties of Li2SiO3

被引:9
作者
Ma, Shenggui [1 ]
Li, Shichang [1 ]
Gao, Tao [1 ,3 ]
Shen, Yanhong [1 ]
Chen, Xiaojun [2 ]
Xiao, Chengjian [2 ]
Lu, Tiecheng [3 ]
机构
[1] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Sichuan, Peoples R China
[2] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621900, Peoples R China
[3] Sichuan Univ, Coll Phys Sci & Technol, Minist Educ, Key Lab High Energy Dens Phys & Technol, Chengdu 610065, Sichuan, Peoples R China
关键词
Li2SiO3; Molecular dynamics; Nanomaterial; Melting temperature; LITHIUM-ION BATTERIES; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIAL; NANOPARTICLES; SILICATES; PARTICLES; MECHANISM; LI4SIO4; ROUTE;
D O I
10.1016/j.ceramint.2017.11.128
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Molecular dynamics simulations have been performed to investigate the structural and melting properties of single crystal and nanocrystal Li2SiO3. The simulated results of both lattice parameters and enthalpy as a function of temperature for single crystal are well consistent with the experimental values. The radial distribution functions and mean square displacement are utilized to analyze and characterize the structural evolution and melting behaviors in simulations. The models of nanocrystal Li2SiO3 are constructed by the Voronoi tessellation techniques. We predict that the melting temperature of single crystal Li2SiO3 is 1500 K, in close agreement with experiment. For nanocrystal Li2SiO3, the results indicate that the melting temperature decreases with the grain size decreasing, and drops to the range of 700-850 K.
引用
收藏
页码:3381 / 3387
页数:7
相关论文
共 50 条
[1]  
Alemi A, 2015, INT NANO LETT, V5, P77, DOI 10.1007/s40089-015-0140-0
[2]   Ionic Conductor of Li2SiO3 as an Effective Dual-Functional Modifier To Optimize the Electrochemical Performance of Li4Ti5O12 for High-Performance Li-Ion Batteries [J].
Bai, Xue ;
Li, Tao ;
Dang, Zhiya ;
Qi, Yong-Xin ;
Lun, Ning ;
Bai, Yu -Jun .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (02) :1426-1436
[3]   Growth of lithium silicate crystals inside porous silicon film and their exploitation for ozone detection [J].
Ben Saad, K. ;
Hamzaoui, H. ;
Labidi, A. ;
Bessais, B. .
APPLIED SURFACE SCIENCE, 2008, 254 (13) :3955-3958
[4]  
Boles MA, 2016, NAT MATER, V15, P141, DOI [10.1038/NMAT4526, 10.1038/nmat4526]
[5]   Substitutional doping in nanocrystal superlattices [J].
Cargnello, Matteo ;
Johnston-Peck, Aaron C. ;
Diroll, Benjamin T. ;
Wong, Eric ;
Datta, Bianca ;
Damodhar, Divij ;
Doan-Nguyen, Vicky V. T. ;
Herzing, Andrew A. ;
Kagan, Cherie R. ;
Murray, Christopher B. .
NATURE, 2015, 524 (7566) :450-+
[6]   Kinetic analysis of the thermal stability of lithium silicates (Li4SiO4 and Li2SiO3) [J].
Cruz, D ;
Bulbulian, S ;
Lima, E ;
Pfeiffer, H .
JOURNAL OF SOLID STATE CHEMISTRY, 2006, 179 (03) :909-916
[7]  
Dalgic SS, 2009, J OPTOELECTRON ADV M, V11, P2126
[8]   Characterization of the structural and electronic properties of crystalline lithium silicates [J].
Du, Jincheng ;
Corrales, L. Rene .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (45) :22346-22352
[9]   PROCEDURE FOR THE CONSTRUCTION OF VORONOI POLYHEDRA [J].
FINNEY, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 32 (01) :137-143
[10]  
Gao F., 2015, HDB NANOPARTICLES, P661, DOI [DOI 10.1007/978-3-319-15338-4_6, 10.1007/978-3-319-15338-4_6]