Effect of monocytes/macrophages on the early osteogenic differentiation of hBMSCs

被引:91
作者
Pirraco, R. P.
Reis, R. L.
Marques, A. P. [1 ]
机构
[1] Univ Minho, Res Grp Biomat Biodegradables & Biomimet 3Bs, Headquarters European Inst Excellence Tissue Engn, P-4806909 Taipas, Guimaraes, Portugal
关键词
osteoblasts; monocytes; macrophages; bone biology; cell interactions; BONE MORPHOGENETIC PROTEIN-2; HUMAN OSTEOCLAST FORMATION; MOLECULAR-MECHANISMS; STROMAL CELLS; STEM-CELLS; IN-VITRO; ALVEOLAR MACROPHAGES; HUMAN MONOCYTES; MARROW; PROLIFERATION;
D O I
10.1002/term.535
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Heterotypic cell interactions are essential for the homeostasis of bone tissue, in particular the widely studied interaction between osteoblasts and osteoclasts. Closely related with osteoclasts are monocytes/macrophages. These have been shown to produce osteogenic factors, e.g. BMP-2, which plays a key role in bone metabolism. However, the mechanisms through which monocytes/macrophages interact with osteoblasts are still elusive. The aim of this work was to assess the influence of human peripheral blood monocytes/macrophages over the early osteogenic differentiation of human bone marrow stromal cells (hBMSCs) in the presence of dexamethasone-supplemented medium. The co-cultures were performed using porous transwells that allowed the interaction between both cell types through the production of paracrine factors. The potential effect of BMP-2 produced by monocytes/macrophages was addressed by adding an anti-BMP-2 antibody to the co-cultures. hBMSCs cultured in the presence of monocytes/macrophages had a higher proliferation rate than hBMSCs monocultures. The quantification of early osteogenic marker alkaline phosphatase (ALP) revealed higher activity of this enzyme in cells in the co-culture throughout the time of culture. Both of these effects were inhibited by adding an anti-BMP-2 antibody to the cultures. Moreover, qRTPCR for osteocalcin and osteopontin transcripts showed overexpression of both markers. Once again, the effect of monocytes/macrophages over hBMSC osteogenic differentiation was completely inhibited in the co-cultures by blocking BMP-2. The present report confirmed that monocytes/macrophages produce BMP-2, which promotes osteogenic differentiation and proliferation of hBMSCs cumulatively to dexamethasone-supplemented medium. This potentially implies that monocyte/macrophages play a stronger role in bone homeostasis than so far supposed. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:392 / 400
页数:9
相关论文
共 46 条
[1]   ISOLATION AND STRUCTURAL IDENTIFICATION OF 1,25-DIHYDROXYVITAMIN-D3 PRODUCED BY CULTURED ALVEOLAR MACROPHAGES IN SARCOIDOSIS [J].
ADAMS, JS ;
SINGER, FR ;
GACAD, MA ;
SHARMA, OP ;
HAYES, MJ ;
VOUROS, P ;
HOLICK, MF .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1985, 60 (05) :960-966
[2]   Human mesenchymal stem cells modulate allogeneic immune cell responses [J].
Aggarwal, S ;
Pittenger, MF .
BLOOD, 2005, 105 (04) :1815-1822
[3]  
BENNETT S, 1994, J LEUKOCYTE BIOL, V56, P236
[4]   Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts) [J].
Bessa, P. C. ;
Casal, M. ;
Reis, R. L. .
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2008, 2 (01) :1-13
[5]   Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2 [J].
Champagne, CM ;
Takebe, J ;
Offenbacher, S ;
Cooper, LF .
BONE, 2002, 30 (01) :26-31
[6]   Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo [J].
Chang, Ming K. ;
Raggatt, Liza-Jane ;
Alexander, Kylie A. ;
Kuliwaba, Julia S. ;
Fazzalari, Nicola L. ;
Schroder, Kate ;
Maylin, Erin R. ;
Ripoll, Vera M. ;
Hume, David A. ;
Pettit, Allison R. .
JOURNAL OF IMMUNOLOGY, 2008, 181 (02) :1232-1244
[7]   Current concepts of molecular aspects of bone healing [J].
Dimitriou, R ;
Tsiridis, E ;
Giannoudis, PV .
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2005, 36 (12) :1392-1404
[8]   Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement [J].
Dominici, M. ;
Le Blanc, K. ;
Mueller, I. ;
Slaper-Cortenbach, I. ;
Marini, F. C. ;
Krause, D. S. ;
Deans, R. J. ;
Keating, A. ;
Prockop, D. J. ;
Horwitz, E. M. .
CYTOTHERAPY, 2006, 8 (04) :315-317
[9]  
Einhorn TA, 1998, CLIN ORTHOP RELAT R, pS7
[10]   Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro [J].
Frank, O ;
Heim, M ;
Jakob, M ;
Barbero, A ;
Schäfer, D ;
Bendik, I ;
Dick, W ;
Heberer, M ;
Martin, I .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2002, 85 (04) :737-746