A time-domain symplectic method for finite viscoelastic cylinders

被引:2
作者
Zhang, Weixiang [1 ,2 ]
Wang, Hui [1 ]
Yuan, Fang [1 ]
机构
[1] Henan Univ Technol, Inst Sci & Engn Computat, Zhengzhou 450052, Peoples R China
[2] Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
关键词
Viscoelastic; Symplectic method; Eigenvector; SAINT-VENANT PROBLEM; LINEAR VISCOELASTICITY; PART I; BEHAVIOR; ELASTICITY; STRIP;
D O I
10.1007/s11043-012-9183-z
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The symplectic method is introduced for boundary-condition problems of finite viscoelastic cylinders. On the basis of the state space formalism and the use of the Laplace integral transform, the general solution of the governing equations, zero- and nonzero-eigenvalue eigenvectors, are obtained. Since the eigenvectors are expressed in concise analytical forms, the adjoint symplectic relation of the Laplace domain is generalized to the time domain. Therefore, the particular solution and the eigenvector expansion method can be discussed directly in the eigenvector space of the time domain, without employing the iterative application of the inverse Laplace transformation. Using this method, various boundary conditions, the particular solution of nonhomogeneous equations, especially the interfacial continuity conditions of composite materials, can be conveniently described by combinations of the eigenvectors.
引用
收藏
页码:243 / 260
页数:18
相关论文
共 50 条
  • [21] Three-dimensional dynamic fracture analysis using scaled boundary finite element method: A time-domain method
    Jiang, Xinxin
    Zhong, Hong
    Li, Deyu
    Saputra, Albert A.
    Song, Chongmin
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 139 : 32 - 45
  • [22] Dynamic stability of spinning viscoelastic cylinders at finite deformation
    Govindjee, Sanjay
    Potter, Trevor
    Wilkening, Jon
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2014, 51 (21-22) : 3589 - 3603
  • [23] Time-domain expression and mechanical response of the viscoelastic Poisson's ratio in asphalt pavement
    Yang, Tianhong
    Zhang, Zeyu
    Shen, Diandong
    Zhang, Zhiyuan
    Yu, Xin
    Luo, Rong
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 446
  • [24] High frequency dynamics of an isotropic Timoshenko periodic beam by the use of the Time-domain Spectral Finite Element Method
    Zak, A.
    Krawczuk, M.
    Palacz, M.
    Dolinski, L.
    Waszkowiak, W.
    JOURNAL OF SOUND AND VIBRATION, 2017, 409 : 318 - 335
  • [25] A time-domain finite element boundary integral approach for elastic wave scattering
    Shi, F.
    Lowe, M. J. S.
    Skelton, E. A.
    Craster, R. V.
    COMPUTATIONAL MECHANICS, 2018, 61 (04) : 471 - 483
  • [26] A time-domain finite element boundary integral approach for elastic wave scattering
    F. Shi
    M. J. S. Lowe
    E. A. Skelton
    R. V. Craster
    Computational Mechanics, 2018, 61 : 471 - 483
  • [27] Time-domain analyses for pile deformation induced by adjacent excavation considering influences of viscoelastic mechanism
    Zhang, Zhiguo
    Huang, Maosong
    Zhang, Chengping
    Jiang, Kangming
    Lu, Minghao
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2019, 85 : 392 - 405
  • [28] Finite-Difference Time-Domain simulation of tower and grounding subjected to lightning
    Viola, F.
    Romano, P.
    Miceli, R.
    Caruso, M.
    Imburgia, A.
    Schettino, G.
    Sauba, G.
    2015 IEEE INTERNATIONAL TELECOMMUNICATIONS ENERGY CONFERENCE (INTELEC), 2015,
  • [29] Research and application of finite-element time-domain method for transient response of buried cable excited by an electromagnetic wave
    Gong, Yanfei
    Chen, Xingtong
    Li, Yujie
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2020, 34 (16) : 2147 - 2167
  • [30] A Time-Domain Adjoint Variable Method for Materials With Dispersive Constitutive Parameters
    Ahmed, Osman S.
    Bakr, Mohamed H.
    Li, Xun
    Nomura, Tsuyoshi
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (10) : 2959 - 2971