Combustion synthesized hierarchically porous WO3 for selective acetone sensing

被引:28
|
作者
Dong, Chengjun [1 ]
Liu, Xu [1 ]
Guan, Hongtao [1 ]
Chen, Gang [1 ]
Xiao, Xuechun [1 ]
Djerdj, Igor [2 ]
Wang, Yude [1 ,3 ]
机构
[1] Yunnan Univ, Dept Mat Sci & Engn, Kunming 650091, Peoples R China
[2] Rudjer Boskovic Inst, Bijenicka 54, Zagreb 10000, Croatia
[3] Yunnan Univ, Yunnan Prov Key Lab Miconano Mat & Technol, Kunming 650091, Peoples R China
基金
中国国家自然科学基金;
关键词
Oxides; Chemical synthesis; Electron microscopy; X-ray photo-emission spectroscopy; TUNGSTEN; NANOSTRUCTURES; NANOFIBERS; DIAGNOSIS;
D O I
10.1016/j.matchemphys.2016.09.036
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An easy, inexpensive combustion route was designed to synthesize hierarchically porous WO3. The tungsten source was fresh peroxiotungstic acid by dissolving tungsten powder into hydrogen peroxide. To promote the combustion reaction, a combined fuel of both glycine and hydrazine hydrate was used. The microstructure was well-connected pores comprised of subunit nanoparticles. Upon exposing towards acetone gas, the porous WO3 based sensor exhibits high gas response, rapid response and recovery, and good selectivity in the range of 5-1000 ppm under working temperature of 300 degrees C. This excellent sensing performance was plausibly attributed to the porous morphology, which hence provides more active sites for the gas molecules' reaction. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:155 / 161
页数:7
相关论文
共 50 条
  • [41] Nanoscale Pd catalysts decorated WO3-SnO2 heterojunction nanotubes for highly sensitive and selective acetone sensing
    Zhang, Jinniu
    Zhang, Lizhai
    Leng, Deying
    Ma, Fei
    Zhang, Ziyan
    Zhang, Yuanyi
    Wang, Wei
    Liang, Qingfei
    Gao, Jianzhi
    Lu, Hongbing
    SENSORS AND ACTUATORS B-CHEMICAL, 2020, 306
  • [42] Facile synthesis of nanostructured WO3 thin films and their characterization for ethanol sensing
    Ahmad, Muhammad Z.
    Sadek, Abu Z.
    Ou, Jian Z.
    Yaacob, M. H.
    Latham, Kay
    Wlodarski, Wojtek
    MATERIALS CHEMISTRY AND PHYSICS, 2013, 141 (2-3) : 912 - 919
  • [43] Enhancement of gas-sensing characteristics of hydrothermally synthesized WO3 nanorods by surface decoration with Pd nanoparticles
    Tong, Pham Van
    Hoa, Nguyen Duc
    Duy, Nguyen Van
    Dang Thi Thanh Le
    Hieu, Nguyen Van
    SENSORS AND ACTUATORS B-CHEMICAL, 2016, 223 : 453 - 460
  • [44] Temperature dependent selective detection of hydrogen and acetone using Pd doped WO3/reduced graphene oxide nanocomposite
    Kaur, Jasmeet
    Anand, Kanica
    Kohli, Nipin
    Kaur, Amanpreet
    Singh, Ravi Chand
    CHEMICAL PHYSICS LETTERS, 2018, 701 : 115 - 125
  • [45] Hydrothermal synthesis and gas sensing properties of WO3•H2O with different morphologies
    Zeng, Wen
    Li, Yanqiong
    Miao, Bin
    Pan, Kangguan
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 56 : 183 - 188
  • [46] CTAB-Assisted Hydrothermal Synthesis of WO3 Hierarchical Porous Structures and Investigation of Their Sensing Properties
    Meng, Dan
    Wang, Guosheng
    San, Xiaoguang
    Shen, Yanbai
    Zhao, Guodong
    Zhang, Yajing
    Meng, Fanli
    JOURNAL OF NANOMATERIALS, 2015, 2015
  • [47] WO3 porous nanosheet arrays with enhanced sensing performance low temperature NO2 gas
    Wang, Mingsong
    Wang, Yiwei
    Li, Xiaojing
    Ge, Chuanxin
    Hussain, Shahid
    Liu, Guiwu
    Qiao, Guanjun
    SENSORS AND ACTUATORS B-CHEMICAL, 2020, 316
  • [48] Room Temperature Detection of Acetone by a PANI/Cellulose/WO3 Electrochemical Sensor
    Aparicio-Martinez, Eider
    Osuna, Velia
    Dominguez, Rocio B.
    Marquez-Lucero, Alfredo
    Armando Zaragoza-Contreras, E.
    Vega-Rios, Alejandro
    JOURNAL OF NANOMATERIALS, 2018, 2018
  • [49] The Optical Absorption Properties of WO3 Nanorods Synthesized by the Hydrothermal Conditions
    Fu, Xiaoming
    MACHINERY, MATERIALS SCIENCE AND ENGINEERING APPLICATIONS, 2012, 510 : 590 - 593
  • [50] Synthesis, Characterization, and Gas Sensing Applications of WO3 Nanobricks
    Xiao, Jingkun
    Song, Chengwen
    Dong, Wei
    Li, Chen
    Yin, Yanyan
    Zhang, Xiaoni
    Song, Mingyan
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2015, 24 (08) : 3026 - 3031