Forced symmetric oscillations of evolution equations

被引:8
作者
Aizicovici, S
Feckan, M
机构
[1] Comenius Univ, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
[2] Ohio Univ, Dept Math, Athens, OH 45701 USA
[3] Slovak Acad Sci, Inst Math, Bratislava 81473, Slovakia
关键词
periodic solutions; symmetric systems; topological degree;
D O I
10.1016/j.na.2005.07.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the existence of periodic forced symmetric solutions to certain classes of evolution equations in Hilbert spaces. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1621 / 1640
页数:20
相关论文
共 14 条
[1]   ON A CLASS OF 2ND-ORDER ANTIPERIODIC BOUNDARY-VALUE-PROBLEMS [J].
AFTABIZADEH, AR ;
AIZICOVICI, S ;
PAVEL, NH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 171 (02) :301-320
[2]   ANTIPERIODIC SOLUTIONS TO A CLASS OF NONLINEAR DIFFERENTIAL-EQUATIONS IN HILBERT-SPACE [J].
AIZICOVICI, S ;
PAVEL, NH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (02) :387-408
[3]  
Aizicovici S., 2004, DYNAM PART DIFFER EQ, V1, P339
[4]  
[Anonymous], REGIONAL C SERIES MA
[5]   Heteroclinic period blow-up in certain symmetric ordinary differential equations [J].
Battelli, F ;
Feckan, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1996, 47 (03) :385-399
[6]   Anti-periodic solutions for semilinear evolution equations [J].
Chen, YQ ;
Wang, XD ;
Xu, HX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 273 (02) :627-636
[7]  
FECKAN M, UNPUB FORCED SYMMETR
[8]  
Gr??ger, 1974, NICHTLINEARE OPERATO
[9]   ANTI-PERIODIC SOLUTIONS OF SOME NONLINEAR EVOLUTION-EQUATIONS [J].
HARAUX, A .
MANUSCRIPTA MATHEMATICA, 1989, 63 (04) :479-505
[10]  
Hartman P, 1964, ORDINARY DIFFERENTIA