Micromachined Fiber Optical Sensor for In Vivo Measurement of Optical Properties of Human Skin

被引:14
作者
Garcia-Uribe, Alejandro [1 ]
Balareddy, Karthik Chinna [1 ]
Zou, Jun [1 ]
Wang, Lihong V. [2 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[2] Washington Univ, Dept Biomed Engn, St Louis, MO 63130 USA
基金
美国国家卫生研究院;
关键词
Absorption coefficient; diffuse reflectance; micromachined optical probe; scattering coefficient;
D O I
10.1109/JSEN.2008.2003306
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present the design, fabrication, and testing of a new micromachined fiber optic sensor probe to conduct oblique incidence diffuse reflectance spectrometry (OIDRS) for in vivo estimation of optical properties of human skins. The probe consists of three source fibers, two linear array of collection fibers, and four micromachined positioning devices for accurate alignment of the fibers. Micromachining plays a significant role in the probe development by enabling device miniaturization, low-cost fabrication, and precise assembly. The new probe has been successfully used to estimate the absorption and scattering coefficient spectra of skin with an optical spectrum between 455 and 765 nm.
引用
收藏
页码:1698 / 1703
页数:6
相关论文
共 22 条
[1]   Detection of preinvasive cancer cells [J].
Backman, V ;
Wallace, MB ;
Perelman, LT ;
Arendt, JT ;
Gurjar, R ;
Müller, MG ;
Zhang, Q ;
Zonios, G ;
Kline, E ;
McGillican, T ;
Shapshay, S ;
Valdez, T ;
Badizadegan, K ;
Crawford, JM ;
Fitzmaurice, M ;
Kabani, S ;
Levin, HS ;
Seiler, M ;
Dasari, RR ;
Itzkan, I ;
Van Dam, J ;
Feld, MS .
NATURE, 2000, 406 (6791) :35-36
[2]   In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy -: art. no. 034018 [J].
Bargo, PR ;
Prahl, SA ;
Goodell, TT ;
Sleven, RA ;
Koval, G ;
Blair, G ;
Jacques, SL .
JOURNAL OF BIOMEDICAL OPTICS, 2005, 10 (03)
[3]   Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm [J].
Bashkatov, AN ;
Genina, EA ;
Kochubey, VI ;
Tuchin, VV .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (15) :2543-2555
[4]   Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths [J].
Dam, JS ;
Pedersen, CB ;
Dalgaard, T ;
Fabricius, PE ;
Aruna, P ;
Andersson-Engels, S .
APPLIED OPTICS, 2001, 40 (07) :1155-1164
[5]   Skin cancer detection by spectroscopic oblique-incidence reflectometry: classification and physiological origins [J].
Garcia-Uribe, A ;
Kehtarnavaz, N ;
Marquez, G ;
Prieto, V ;
Duvic, M ;
Wang, LHV .
APPLIED OPTICS, 2004, 43 (13) :2643-2650
[6]   Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue [J].
Gniadecka, M ;
Philipsen, PA ;
Sigurdsson, S ;
Wessel, S ;
Nielsen, OF ;
Christensen, DH ;
Hercogova, J ;
Rossen, K ;
Thomsen, HK ;
Gniadecki, R ;
Hansen, LK ;
Wulf, HC .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2004, 122 (02) :443-449
[7]   Modelling and validation of spectral reflectance for the colon [J].
Hidovic-Rowe, D ;
Claridge, E .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (06) :1071-1093
[8]   Photodynamic therapy in the treatment of cancer - Current state of the art [J].
Hsi, RA ;
Rosenthal, DI ;
Glatstein, E .
DRUGS, 1999, 57 (05) :725-734
[9]  
Hulst HC, 1981, LIGHT SCATTERING SMA
[10]   In vivo determination of local skin optical properties and photon path length by use of spatially resolved diffuse reflectance with applications in laser Doppler flowmetry [J].
Larsson, M ;
Nilsson, H ;
Strömberg, T .
APPLIED OPTICS, 2003, 42 (01) :124-134