Stability of Ni and Ti in Hydrogen Evolution in the Presence of 1-Butyl-3-methylimidazolium Tetrafluoroborate

被引:0
|
作者
Kwon, Kyungjung [1 ]
Park, Jesik [2 ]
Lee, Churl Kyoung [2 ]
Kim, Hansu [3 ]
机构
[1] Sejong Univ, Dept Energy & Mineral Resources Engn, Seoul 143747, South Korea
[2] Kumoh Natl Inst Technol, Sch Adv Mat & Syst Engn, Gumi 730701, Gyungsangbuk Do, South Korea
[3] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
来源
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE | 2012年 / 7卷 / 10期
关键词
hydrogen evolution; corrosion; ionic liquid; titanium; nickel; IONIC-LIQUID; WATER ELECTROLYSIS; NICKEL; ELECTRODEPOSITION; TITANIUM; CORROSION; ALLOYS;
D O I
暂无
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Ni and Ti electrodes were tested for hydrogen evolution reaction in water electrolysis using electrolytes containing 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM center dot BF4) ionic liquid. Reductive currents of Ni and Ti at low potentials in BMIM center dot BF4 (12 wt%) and KOH (6 wt%) aqueous electrolytes originate from hydrogen evolution with considering the electrolyte composition and the electrochemical window of the ionic liquid, which was confirmed by Pt electrode. While the Ti electrode shows a similar hydrogen evolution activity to the Ni electrode in the BMIM center dot BF4 aqueous electrolyte, its activity is inferior to the Ni electrode in the KOH aqueous electrolyte without the ionic liquid. The existence of the ionic liquid in aqueous electrolyte appears to change the hydrogen evolution kinetics at both Ni and Ti electrodes as seen in Tafel analysis. This is partly because BMIM center dot BF4 is susceptible to hydrolytic decomposition of BMIM+ owing to the hydrogen at C2 position and of BF4- incurring HF formation. A measurement of electrode weight loss after a potentiostatic experiment and an accompanying SEM analysis indicate the surface roughening of the electrodes and the pore formation on the surface of Ti in the presence of BMIM center dot BF4. This change in surface morphology can be attributed to HF that could be formed from the hydrolytic instability of BMIM center dot BF4.
引用
收藏
页码:9835 / 9843
页数:9
相关论文
共 50 条
  • [1] Electrochemical behavior of cobalt from 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid
    Su, Caina
    An, Maozhong
    Yang, Peixia
    Gu, Hongwei
    Guo, Xinghua
    APPLIED SURFACE SCIENCE, 2010, 256 (16) : 4888 - 4893
  • [2] Switching of hydrogen bonds of water in ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate
    Yoshimura, Yukihiro
    Takekiyo, Takahiro
    Okamoto, Chikara
    Hatano, Naohiro
    Abe, Hiroshi
    JOURNAL OF RAMAN SPECTROSCOPY, 2013, 44 (03) : 475 - 480
  • [3] Surface tension and viscosity of 1-butyl-3-methylimidazolium iodide and 1-butyl-3-methylimidazolium tetrafluoroborate, and solubility of lithium bromide+1-butyl-3-methylimidazolium bromide in water
    Ki-Sub Kim
    Dorjnamjin Demberelnyamba
    Bae-Kun Shin
    Sun-Hwa Yeon
    Sukjeong Choi
    Jong-Ho Cha
    Huen Lee
    Chul-Soo Lee
    Jae-Jin Shim
    Korean Journal of Chemical Engineering, 2006, 23 : 113 - 116
  • [4] Surface tension and viscosity of 1-butyl-3-methylimidazolium iodide and 1-butyl-3-methylimidazolium tetrafluoroborate, and solubility of lithium bromide+1-butyl-3-methylimidazolium bromide in water
    Kim, KS
    Demberelnyamba, D
    Shin, BK
    Yeon, SH
    Choi, S
    Cha, JH
    Lee, H
    Lee, CS
    Shim, JJ
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2006, 23 (01) : 113 - 116
  • [5] NEW (p,ρ,T) MEASUREMENTS OF 1-BUTYL-3-METHYLIMIDAZOLIUM TETRAFLUOROBORATE
    Safarov, Javid
    Namazova, Aygul
    Aliyev, Abilgani
    Talibov, Misirkhan
    Hassel, Egon
    PROCESSES OF PETROCHEMISTRY AND OIL REFINING, 2019, 20 (01): : 53 - 62
  • [6] Thermal Stability, EquilibriumVapor Pressure and Standard Enthalpy of Vaporization of 1-Butyl-3-methylimidazolium Tetrafluoroborate
    Liang Rui
    Yang Mei-Rong
    Zhou Qing-Xiang
    ACTA PHYSICO-CHIMICA SINICA, 2010, 26 (06) : 1468 - 1472
  • [7] Carbon dioxide solubility in 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium tetrachloroferrate over an extended range of temperature and pressure
    Safarov, Javid
    Sperlich, Christopher
    Namazova, Aygul
    Aliyev, Abilgani
    Tuma, Dirk
    Shahverdiyev, Astan
    Hassel, Egon
    FLUID PHASE EQUILIBRIA, 2018, 467 : 45 - 60
  • [8] ZnS nanoparticle synthesis in 1-butyl-3-methylimidazolium tetrafluoroborate by simple heating
    Kareem, T. Abdul
    Kaliani, A. Anu
    ARABIAN JOURNAL OF CHEMISTRY, 2019, 12 (08) : 2810 - 2816
  • [9] Temperature dependence of the microstructure of 1-butyl-3-methylimidazolium tetrafluoroborate in aqueous solution
    Wang, Huiyong
    Wang, Jianji
    Zhang, Lamei
    VIBRATIONAL SPECTROSCOPY, 2013, 68 : 20 - 28
  • [10] Measurements of Thermal Conductivity of 1-Butyl-3-methylimidazolium Tetrafluoroborate at High Pressure
    Tomida, Daisuke
    Kenmochi, Satoshi
    Tsukada, Takao
    Yokoyama, Chiaki
    HEAT TRANSFER-ASIAN RESEARCH, 2007, 36 (06): : 361 - 372