Exploiting poly(e-caprolactone) and cellulose nanofibrils modified with latex nanoparticles for the development of biodegradable nanocomposites

被引:20
|
作者
Vilela, Carla [1 ]
Engstrom, Joakim [2 ,3 ]
Valente, Bruno F. A. [1 ]
Jawerth, Marcus [2 ,3 ]
Carlmark, Anna [2 ]
Freire, Carmen S. R. [1 ]
机构
[1] Univ Aveiro, CICECO Aveiro Inst Mat, Dept Chem, P-3810193 Aveiro, Portugal
[2] KTH Royal Inst Technol, KTH Sch Engn Sci Chem Biotechnol & Hlth, Div Coating Technol, Dept Fibre & Polymer Technol, SE-10044 Stockholm, Sweden
[3] KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, SE-10044 Stockholm, Sweden
关键词
ENZYMATIC DEGRADATION; BLOCK-COPOLYMER; COMPOSITES;
D O I
10.1002/pc.24865
中图分类号
TB33 [复合材料];
学科分类号
摘要
This study reports the development of nanocomposites based on poly(e-caprolactone) (PCL) and cellulose nanofibrils (CNF) modified with cationic latex nanoparticles. The physical adsorption of these water-based latexes on the surface of CNF was studied as an environment-friendly strategy to enhance the compatibility of CNF with a hydrophobic polymeric matrix. The latexes are composed of amphiphilic block copolymers based on cationic poly(N,N-dimethylaminoethyl methacrylate-co-methacrylic acid) as the hydrophilic block, and either poly(methyl methacrylate) or poly(n-butyl methacrylate) as the hydrophobic block. The simple and practical melt-mixing of PCL- and latex-modified CNF yielded white homogeneous nanocomposites with complete embedment of the nanofibrils in the thermoplastic matrix. All nanocomposites are semicrystalline materials with good mechanical properties (Young's modulus = 43.6-52.3 MPa) and thermal stability up to 335-340 degrees C. Degradation tests clearly showed that the nanocomposites slowly degrade in the presence of lipase-type enzyme. These PCL/CNF-latex nanocomposite materials show great promise as future environmentally friendly packaging materials. POLYM. COMPOS., 40:1342-1353, 2019. (c) 2018 Society of Plastics Engineers
引用
收藏
页码:1342 / 1353
页数:12
相关论文
共 50 条
  • [21] Functionalization and Compatibilization of Poly(e-caprolactone) Composites with Cellulose Microfibres: Morphology, Thermal and Mechanical Properties
    Haque, Md Minhaz-Ul
    Errico, Maria Emanuela
    Gentile, Gennaro
    Avella, Maurizio
    Pracella, Mariano
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2012, 297 (10) : 985 - 993
  • [22] Poly(sodium 4-styrenesulfonate) modified graphene for reinforced biodegradable poly(ε-caprolactone) nanocomposites
    Wang, Ming
    Deng, Xiao-Ying
    Du, An-Ke
    Zhao, Tong-Hui
    Zeng, Jian-Bing
    RSC ADVANCES, 2015, 5 (89) : 73146 - 73154
  • [23] Biodegradable poly(L-lactide)/poly(ε-caprolactone)-modified montmorillonite nanocomposites:: Preparation and characterization
    Yu, Zhenyang
    Yin, Jingbo
    Yan, Shifeng
    Xie, Yongtao
    Ma, Jia
    Chen, Xuesi
    POLYMER, 2007, 48 (21) : 6439 - 6447
  • [24] Microfluidic-assisted production of poly(e-caprolactone) and cellulose acetate nanoparticles: effects of polymers, surfactants, and flow rate ratios
    Lari, Atefe Sadeghi
    Khatibi, Alireza
    Zahedi, Payam
    Ghourchian, Hedayatollah
    POLYMER BULLETIN, 2021, 78 (10) : 5449 - 5466
  • [25] Biodegradable composite of poly E-caprolactone/hydroxyapatite 3-D scaffolds for bone tissue engineering
    Heo, S. J.
    Kim, S. E.
    Hyun, Y. T.
    Kim, D. H.
    Lee, H. M.
    Shin, J. W.
    Hwang, Y. M.
    Shin, J. W.
    3RD KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2006, 2007, 15 : 672 - +
  • [26] Enhanced mechanical properties of biodegradable poly(ε-caprolactone)/cellulose acetate butyrate nanocomposites filled with organoclay
    Zhu, Bo
    Wang, Xiuwei
    Zeng, Qianqian
    Wang, Pan
    Wang, Yaming
    Liu, Chuntai
    Shen, Changyu
    COMPOSITES COMMUNICATIONS, 2019, 13 : 70 - 74
  • [27] Simulation and in vitro evaluations of microfluidically-fabricated clarithromycin-poly (e-caprolactone) nanoparticles
    Tavana, Beeta
    Khatibi, Alireza
    Jafarkhani, Saeed
    Zahedi, Payam
    Zamani, Mohammad Hossein
    Jafari, Seyed Hassan
    Najafi, Mohammad
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 124 : 211 - 223
  • [28] Silk fibroin modified porous poly(E-caprolactone) scaffold for human fibroblast culture in vitro
    Chen, G
    Zhou, P
    Mei, N
    Chen, X
    Shao, ZZ
    Pan, LF
    Wu, CG
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2004, 15 (06) : 671 - 677
  • [29] Synthesis of biodegradable poly(e-caprolactone)-organosiloxane nanohybrids with charged functional groups for bone tissue engineering applications
    Rhee, S. H.
    Song, S. H.
    Shon, W.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2012, 6 : 212 - 212
  • [30] Preparation of a sustainable bio-copolymer based on Luffa cylindrica cellulose and poly(e-caprolactone) for bioplastic applications
    Akay, Ozge
    Altinkok, Cagatay
    Acik, Gokhan
    Yuce, Huseyin
    Ege, Gozde Konuk
    Genc, Garip
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 196 : 98 - 106