The Effect of Different Frequencies of Pulsed Electromagnetic Fields on Cartilage Repair of Adipose Mesenchymal Stem Cell-Derived Exosomes in Osteoarthritis

被引:10
作者
Xu, Yang [1 ,2 ,3 ]
Wang, Qian [1 ,2 ,3 ]
Wang, Xiang-Xiu [1 ,2 ,3 ]
Xiang, Xiao-Na [1 ,2 ,3 ]
Peng, Jia-Lei [1 ,2 ,3 ]
He, Cheng-Qi [1 ,2 ,3 ]
He, Hong-Chen [1 ,2 ,3 ,4 ]
机构
[1] Sichuan Univ, West China Hosp, Rehabil Med Ctr, Chengdu, Peoples R China
[2] Sichuan Univ, Sch Rehabil Sci, West China Sch Med, Chengdu, Peoples R China
[3] Rehabil Med Key Lab Sichuan Prov, Chengdu, Peoples R China
[4] Sichuan Univ, West China Hosp, Rehabil Med Ctr, Chengdu 610041, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
adipose mesenchymal stem cell; exosomes; pulsed electromagnetic fields; osteoarthritis; cartilage repair; CHONDROCYTE PROLIFERATION; KNEE OSTEOARTHRITIS; TISSUE REGENERATION; ADENOSINE RECEPTORS; INFLAMMATION; CHONDROGENESIS; TRANSDUCTION; APOPTOSIS; RELEASE; PATHWAY;
D O I
10.1177/19476035221137726
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Background The intra-articular injection of mesenchymal stem cell (MSC)-derived exosomes has already been proved to reverse osteoarthritic cartilage degeneration. Pulsed electromagnetic field (PEMF) has been found to regulate the biogenic function of MSCs. However, the effect of PEMF on MSC-derived exosomes has not yet been characterized. The aim of this study was to elucidate the regulatory role of different frequencies of PEMF in promoting the osteoarthritic cartilage regeneration of MSC-derived exosomes. Methods The adipose tissue-derived MSCs (AMSCs) were extracted from the epididymal fat of healthy rats and further exposed to the PEMF at 1 mT amplitude and a frequency of 15, 45, and 75 Hz, respectively, in an incubator. The chondrocytes were treated with interlukin-1 beta (IL-1 beta) and the regenerative effect of co-culturing with PEMF-exposed AMSC-derived exosomes was assessed via Western blot, quantitative polymerase chain reaction, and ELISA assays. A rat model of osteoarthritis was established by anterior cruciate ligament transection (ACLT) surgery and received 4 times intra-articular injection of PEMF-exposed AMSC-derived exosomes once a week. After 8 weeks, the knee joint specimens of rats were collected for micro-computed tomography and histologic analyses. Results PEMF-exposed AMSC-derived exosomes could be endocytosed with IL-1 beta-induced chondrocytes. Compared with the AMSC-derived exosomes alone, the PEMF-exposed AMSC-derived exosomes substantially suppressed the inflammation and extracellular matrix degeneration of IL-1 beta-induced chondrocytes as shown by higher expression of transcripts and proteins of COL2A1, SOX9, and ACAN and lower expression of MMP13 and caspase-1. Of these, the 75-Hz PEMF presented a more significant inhibitive effect than the 15-Hz and 45-Hz PEMFs. Furthermore, the intra-articular injection of 75-Hz PEMF-exposed exosomes could obviously increase the number of tibial epiphyseal trabeculae, lead to a remarkable decrease in Osteoarthritis Research Society International score, and upregulate the COL2A1 and ACAN protein level of the degenerated cartilage. Conclusion The present study demonstrated that PEMF stimulation could effectively promote the regeneration effects of AMSC-derived exosomes on osteoarthritic cartilage. Compared with other frequency parameters, the PEMF at a frequency of 75 Hz showed a superior positive effect on AMSC-derived exosomes in suppressing the IL-1 beta-induced chondrocyte inflammation and extracellular matrix catabolism, as well as the osteoarthritic cartilage degeneration.
引用
收藏
页码:200 / 212
页数:13
相关论文
共 50 条
  • [41] Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis
    Lei He
    Tianwei He
    Jianghao Xing
    Qing Zhou
    Lei Fan
    Can Liu
    Yuyong Chen
    Depeng Wu
    Zhenming Tian
    Bin Liu
    Limin Rong
    Stem Cell Research & Therapy, 11
  • [42] Recent Progress in Mesenchymal Stem Cell-Derived Exosomes for Skin Wound Repair
    Xie, Peilin
    Xue, Xiaodong
    Li, Xiaodong
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2024, 82 (03) : 1651 - 1663
  • [43] Adipose Tissue-Derived Mesenchymal Stem Cell-Derived Exosomes Promote Wound Healing and Tissue Regeneration
    Lee, Jun Ho
    Won, Yu Jin
    Kim, Hail
    Choi, Minji
    Lee, Esther
    Ryoou, Bumsik
    Lee, Seok-Geun
    Cho, Byong Seung
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (13)
  • [44] Application of mesenchymal stem cell-derived exosomes in kidney diseases
    Gang, Deng
    Yu, Chang Jiang
    Zhu, Shuoji
    Zhu, Ping
    Nasser, M., I
    CELLULAR IMMUNOLOGY, 2021, 364
  • [45] Pulsed Electromagnetic Fields Stimulate Osteogenic Differentiation in Human Bone Marrow and Adipose Tissue Derived Mesenchymal Stem Cells
    Ongaro, Alessia
    Pellati, Agnese
    Bagheri, Leila
    Fortini, Cinzia
    Setti, Stefania
    De Mattei, Monica
    BIOELECTROMAGNETICS, 2014, 35 (06) : 426 - 436
  • [46] Mesenchymal stromal/stem cell-derived exosomes as a potential therapeutic approach to osteoarthritis combined with type 2 diabetes mellitus
    Xie, Siyi
    Liu, Meiling
    Kong, Yajie
    Yang, Yiming
    Chen, Ruixue
    Wang, Yuzhong
    Cao, Shuxing
    Song, Yongzhou
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2025, 13
  • [47] Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis
    Yu Zhu
    Yuchen Wang
    Bizeng Zhao
    Xin Niu
    Bin Hu
    Qing Li
    Juntao Zhang
    Jian Ding
    Yunfeng Chen
    Yang Wang
    Stem Cell Research & Therapy, 8
  • [48] MiR-129-5p shuttled by human synovial mesenchymal stem cell-derived exosomes relieves IL-1β induced osteoarthritis via targeting HMGB1
    Qiu, Min
    Liu, Da
    Fu, Qin
    LIFE SCIENCES, 2021, 269
  • [49] Adipose-derived mesenchymal stem cell exosomes: a novel pathway for tissues repair
    Yuan Fang
    Yufang Zhang
    Jianda Zhou
    Ke Cao
    Cell and Tissue Banking, 2019, 20 : 153 - 161
  • [50] Adipose-derived mesenchymal stem cell exosomes: a novel pathway for tissues repair
    Fang, Yuan
    Zhang, Yufang
    Zhou, Jianda
    Cao, Ke
    CELL AND TISSUE BANKING, 2019, 20 (02) : 153 - 161