The Effect of Different Frequencies of Pulsed Electromagnetic Fields on Cartilage Repair of Adipose Mesenchymal Stem Cell-Derived Exosomes in Osteoarthritis

被引:10
|
作者
Xu, Yang [1 ,2 ,3 ]
Wang, Qian [1 ,2 ,3 ]
Wang, Xiang-Xiu [1 ,2 ,3 ]
Xiang, Xiao-Na [1 ,2 ,3 ]
Peng, Jia-Lei [1 ,2 ,3 ]
He, Cheng-Qi [1 ,2 ,3 ]
He, Hong-Chen [1 ,2 ,3 ,4 ]
机构
[1] Sichuan Univ, West China Hosp, Rehabil Med Ctr, Chengdu, Peoples R China
[2] Sichuan Univ, Sch Rehabil Sci, West China Sch Med, Chengdu, Peoples R China
[3] Rehabil Med Key Lab Sichuan Prov, Chengdu, Peoples R China
[4] Sichuan Univ, West China Hosp, Rehabil Med Ctr, Chengdu 610041, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
adipose mesenchymal stem cell; exosomes; pulsed electromagnetic fields; osteoarthritis; cartilage repair; CHONDROCYTE PROLIFERATION; KNEE OSTEOARTHRITIS; TISSUE REGENERATION; ADENOSINE RECEPTORS; INFLAMMATION; CHONDROGENESIS; TRANSDUCTION; APOPTOSIS; RELEASE; PATHWAY;
D O I
10.1177/19476035221137726
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Background The intra-articular injection of mesenchymal stem cell (MSC)-derived exosomes has already been proved to reverse osteoarthritic cartilage degeneration. Pulsed electromagnetic field (PEMF) has been found to regulate the biogenic function of MSCs. However, the effect of PEMF on MSC-derived exosomes has not yet been characterized. The aim of this study was to elucidate the regulatory role of different frequencies of PEMF in promoting the osteoarthritic cartilage regeneration of MSC-derived exosomes. Methods The adipose tissue-derived MSCs (AMSCs) were extracted from the epididymal fat of healthy rats and further exposed to the PEMF at 1 mT amplitude and a frequency of 15, 45, and 75 Hz, respectively, in an incubator. The chondrocytes were treated with interlukin-1 beta (IL-1 beta) and the regenerative effect of co-culturing with PEMF-exposed AMSC-derived exosomes was assessed via Western blot, quantitative polymerase chain reaction, and ELISA assays. A rat model of osteoarthritis was established by anterior cruciate ligament transection (ACLT) surgery and received 4 times intra-articular injection of PEMF-exposed AMSC-derived exosomes once a week. After 8 weeks, the knee joint specimens of rats were collected for micro-computed tomography and histologic analyses. Results PEMF-exposed AMSC-derived exosomes could be endocytosed with IL-1 beta-induced chondrocytes. Compared with the AMSC-derived exosomes alone, the PEMF-exposed AMSC-derived exosomes substantially suppressed the inflammation and extracellular matrix degeneration of IL-1 beta-induced chondrocytes as shown by higher expression of transcripts and proteins of COL2A1, SOX9, and ACAN and lower expression of MMP13 and caspase-1. Of these, the 75-Hz PEMF presented a more significant inhibitive effect than the 15-Hz and 45-Hz PEMFs. Furthermore, the intra-articular injection of 75-Hz PEMF-exposed exosomes could obviously increase the number of tibial epiphyseal trabeculae, lead to a remarkable decrease in Osteoarthritis Research Society International score, and upregulate the COL2A1 and ACAN protein level of the degenerated cartilage. Conclusion The present study demonstrated that PEMF stimulation could effectively promote the regeneration effects of AMSC-derived exosomes on osteoarthritic cartilage. Compared with other frequency parameters, the PEMF at a frequency of 75 Hz showed a superior positive effect on AMSC-derived exosomes in suppressing the IL-1 beta-induced chondrocyte inflammation and extracellular matrix catabolism, as well as the osteoarthritic cartilage degeneration.
引用
收藏
页码:200 / 212
页数:13
相关论文
共 50 条
  • [31] Kartogenin enhances the therapeutic effect of bone marrow mesenchymal stem cells derived exosomes in cartilage repair
    Liu, Chun
    Li, Yun
    Yang, Zhijian
    Zhou, Zhiyou
    Lou, Zhihao
    Zhang, Qiqing
    NANOMEDICINE, 2020, 15 (03) : 273 - 288
  • [32] Mesenchymal Stem Cell-Derived Exosomes: A Potential Therapeutic Avenue in Knee Osteoarthritis
    Jeyaraman, Madhan
    Muthu, Sathish
    Gulati, Arun
    Jeyaraman, Naveen
    Prajwal, G. S.
    Jain, Rashmi
    CARTILAGE, 2021, 13 (1_SUPPL) : 1572S - 1585S
  • [33] The Role of Mesenchymal Stem Cell derived Exosomes in Microenvironment of Knee Osteoarthritis*
    Hou Jing-Yu
    Li Zhen-Wei
    Hu Yuan
    Liu Xiao-Wen
    Shou Kang-Quan
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2023, 50 (01) : 18 - 24
  • [34] Stem cell-derived exosomes for chronic wound repair
    Mi, Peng
    Liu, Jia-Lin
    Qi, Bao-Ping
    Wei, Ben-Mei
    Xu, Cheng-Zhi
    Zhu, Lian
    CELL AND TISSUE RESEARCH, 2023, 391 (03) : 419 - 423
  • [35] Therapeutic potential of mesenchymal stem cell-derived exosomes in skeletal diseases
    Yang, Xiaobo
    Zhang, Shaodian
    Lu, Jinwei
    Chen, Xiaoling
    Zheng, Tian
    He, Rongxin
    Ye, Chenyi
    Xu, Jianbin
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2024, 11
  • [36] Strategies in product engineering of mesenchymal stem cell-derived exosomes: unveiling the mechanisms underpinning the promotive effects of mesenchymal stem cell-derived exosomes
    Jiang, Yudong
    Lv, Hanning
    Shen, Fuguo
    Fan, Lei
    Zhang, Hongjun
    Huang, Yong
    Liu, Jia
    Wang, Dong
    Pan, Haile
    Yang, Jianhua
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [37] The Potential of Mesenchymal Stem Cell-Derived Exosomes to Treat Diabetes Mellitus
    Kim, Ju-El
    Lee, Jong-Won
    Cha, Gi Doo
    Yoon, Jeong-Kee
    BIOMIMETICS, 2025, 10 (01)
  • [38] Stem cell-derived exosomes for chronic wound repair
    Peng Mi
    Jia-Lin Liu
    Bao-Ping Qi
    Ben-Mei Wei
    Cheng-Zhi Xu
    Lian Zhu
    Cell and Tissue Research, 2023, 391 : 419 - 423
  • [39] In Vivo Effect of Two Different Pulsed Electromagnetic Field Frequencies on Osteoarthritis
    Veronesi, F.
    Torricelli, P.
    Giavaresi, G.
    Sartori, M.
    Cavani, F.
    Setti, S.
    Cadossi, M.
    Ongaro, A.
    Fini, M.
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2014, 32 (05) : 677 - 685
  • [40] Mesenchymal Stem Cell-Derived Exosomes: Hope for Spinal Cord Injury Repair
    Ren, Zhihua
    Qi, Yao
    Sun, Siyuan
    Tao, Yuanyuan
    Shi, Riyi
    STEM CELLS AND DEVELOPMENT, 2020, 29 (23) : 1467 - 1478