共 33 条
Ablation of Shank3 alleviates cardiac dysfunction in aging mice by promoting CaMKII activation and Parkin-mediated mitophagy
被引:20
|作者:
Wang, Ying
[1
]
Xu, Yuerong
[2
]
Guo, Wangang
[1
]
Fang, Yexian
[1
]
Hu, Lang
[1
]
Wang, Runze
[1
]
Zhao, Ran
[1
]
Guo, Dong
[1
]
Qi, Bingchao
[1
]
Ren, Gaotong
[1
]
Ren, Jun
[3
,4
]
Li, Yan
[1
,4
]
Zhang, Mingming
[1
,4
]
机构:
[1] Air Force Med Univ, Tangdu Hosp, Dept Cardiol, Xian 710038, Peoples R China
[2] Air Force Med Univ, Sch Stomatol, Dept Orthodont, Xian 710032, Peoples R China
[3] Fudan Univ, Zhongshan Hosp, Shanghai Inst Cardiovasc Dis, Dept Cardiol, Shanghai, Peoples R China
[4] Fudan Univ, Zhongshan Hosp, Shanghai Inst Cardiovasc Dis, Dept Cardiol, Shanghai, Peoples R China
来源:
REDOX BIOLOGY
|
2022年
/
58卷
基金:
中国国家自然科学基金;
关键词:
Cardiac aging;
Mitophagy;
Shank3;
CaMKII;
Oxidative stress;
MITOCHONDRIAL DYNAMICS;
OXIDATIVE STRESS;
QUALITY-CONTROL;
LIFE-SPAN;
PROTEINS;
MECHANISMS;
AUTOPHAGY;
DISEASE;
FAMILY;
D O I:
10.1016/j.redox.2022.102537
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Compromised mitophagy and mitochondrial homeostasis are major contributors for the etiology of cardiac aging, although the precise underlying mechanisms remains elusive. Shank3, a heart-enriched protein, has recently been reported to regulate aging-related neurodegenerative diseases. This study aimed to examine the role of Shank3 in the pathogenesis of cardiac senescence and the possible mechanisms involved. Cardiac-specific con-ditional Shank3 knockout (Shank3CKO) mice were subjected to natural aging. Mitochondrial function and mitophagy activity were determined in vivo, in mouse hearts and in vitro, in cardiomyocytes. Here, we showed that cardiac Shank3 expression exhibited a gradual increase during the natural progression of the aging, accompanied by overtly decreased mitophagy activity and a decline in cardiac function. Ablation of Shank3 promoted mitophagy, reduced mitochondria-derived superoxide (H2O2 and O2 center dot-) production and apoptosis, and protected against cardiac dysfunction in the aged heart. In an in vitro study, senescent cardiomyocytes treated with D-gal exhibited reduced mitophagy and significantly elevated Shank3 expression. Shank3 knock-down restored mitophagy, leading to increased mitochondrial membrane potential, decreased mitochondrial oxida-tive stress, and reduced apoptosis in senescent cardiomyocytes, whereas Shank3 overexpression mimicked D-gal-induced mitophagy inhibition and mitochondrial dysfunction in normally cultured cardiomyocytes. Mechanis-tically, the IP assay revealed that Shank3 directly binds to CaMKII, and this interaction was further increased in the aged heart. Enhanced Shank3/CaMKII binding impedes mitochondrial translocation of CaMKII, resulting in the inhibition of parkin-mediated mitophagy, which ultimately leads to mitochondrial dysfunction and cardiac damage in the aged heart. Our study identified Shank3 as a novel contributor to aging-related cardiac damage. Manipulating Shank3/CaMKII-induced mitophagy inhibition could thus be an optional strategy for therapeutic intervention in clinical aging-related cardiac dysfunctions.
引用
收藏
页数:16
相关论文