A CkDREB1 gene isolated from Caragana korshinskii Kom. enhances Arabidopsis drought and cold tolerance

被引:5
|
作者
Zhang, Ziyi [1 ]
Yang, Qi [1 ]
Zhang, Chunlin [1 ]
Wei, Lili [1 ]
Yue, Rong [1 ]
Li, Guojing [1 ]
Lin, Xiaofei [2 ]
Wang, Ruigang [1 ]
机构
[1] Inner Mongolia Agr Univ, Coll Life Sci, Inner Mongolia Key Lab Plant Stress Physiol & Mol, Hohhot, Peoples R China
[2] Inner Mongolia Univ, Sch Life Sci, Minist Educ, Key Lab Forage & Endem Crop Biotechnol, Hohhot, Peoples R China
基金
中国国家自然科学基金;
关键词
AP2 DNA-binding motif; DREB; Drought stress; Transcription activator; DNA-BINDING PROTEINS; LOW-TEMPERATURE; TRANSCRIPTION FACTORS; ABSCISIC-ACID; FREEZING TOLERANCE; STRESS TOLERANCE; AP2; DOMAIN; HIGH-SALT; EXPRESSION; ELEMENT;
D O I
10.1007/s40415-018-0509-1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Caragana korshinskii Kom., an arbuscular legume with important economic and ecological value in feed, processing industry, and environmental protection, also has great tolerance potential to abiotic stress conditions. An AP2 domain-containing gene was isolated from the suppression subtractive hybridization library of C. korshinskii under drought stress. In addition, the isolated gene was also found to be responsive to cold and ABA treatment. Phylogenetic analysis indicates that the deduced protein belongs to the DREB A-1subfamily and is designated as CkDREB1. Overexpression of CkDREB1 in Arabidopsis thaliana (L.) Heynh increased drought and cold tolerance compared with the wild type. The drought responsive genes RD29A, RD29B, KIN1, and KIN2, as well as cold-responsive marker genes COR15A and COR47, were also highly induced in the overexpression lines under drought and cold conditions. These results should shed light on our understanding on the mechanisms of abiotic resistance of C. korshinskii.
引用
收藏
页码:97 / 105
页数:9
相关论文
共 50 条
  • [31] The GDSL lipase CpGLIP1 from Chimonanthus praecox improves drought and cold tolerance in Arabidopsis and poplar
    Liu, Daofeng
    Zhao, Xiaoyan
    Liu, Yuhong
    Tian, Mingyang
    Zhao, Jiahui
    Bai, Ningyu
    Huang, Renwei
    Li, Mingyang
    Sui, Shunzhao
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 215
  • [32] Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis
    Chen, ZZ
    Hong, XH
    Zhang, HR
    Wang, YQ
    Li, X
    Zhu, JK
    Gong, ZZ
    PLANT JOURNAL, 2005, 43 (02): : 273 - 283
  • [33] Overexpression of ABA receptor gene VsPYL5 from common vetch enhances salt and cold tolerance in Arabidopsis
    Sun, Yanmei
    Geng, Bohao
    Sun, Hongjian
    You, Juan
    Guo, Zhenfei
    Shi, Haifan
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2024, 220
  • [34] A novel cold-regulated gene from Phlox subulata, PsCor413im1, enhances low temperature tolerance in Arabidopsis
    Zhou, Aimin
    Sun, Hongwei
    Feng, Shuang
    Zhou, Mi
    Gong, Shufang
    Wang, Jingang
    Zhang, Shuzhen
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 495 (02) : 1688 - 1694
  • [35] Overexpression of WsSGTL1 Gene of Withania somnifera Enhances Salt Tolerance, Heat Tolerance and Cold Acclimation Ability in Transgenic Arabidopsis Plants
    Mishra, Manoj K.
    Chaturvedi, Pankaj
    Singh, Ruchi
    Singh, Gaurav
    Sharma, Lokendra K.
    Pandey, Vibha
    Kumari, Nishi
    Misra, Pratibha
    PLOS ONE, 2013, 8 (04):
  • [36] An Alfin-like gene from Atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis
    Jian-Jun Tao
    Wei Wei
    Wen-Jia Pan
    Long Lu
    Qing-Tian Li
    Jin-Biao Ma
    Wan-Ke Zhang
    Biao Ma
    Shou-Yi Chen
    Jin-Song Zhang
    Scientific Reports, 8
  • [37] A receptor-like kinase gene (GbRLK) from Gossypium barbadense enhances salinity and drought-stress tolerance in Arabidopsis
    Jun Zhao
    Yulong Gao
    Zhiyuan Zhang
    Tianzi Chen
    Wangzhen Guo
    Tianzhen Zhang
    BMC Plant Biology, 13
  • [38] An Alfin-like gene from Atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis
    Tao, Jian-Jun
    Wei, Wei
    Pan, Wen-Jia
    Lu, Long
    Li, Qing-Tian
    Ma, Jin-Biao
    Zhang, Wan-Ke
    Ma, Biao
    Chen, Shou-Yi
    Zhang, Jin-Song
    SCIENTIFIC REPORTS, 2018, 8
  • [39] PgLEA, a gene for late embryogenesis abundant protein from Panax ginseng, enhances drought and salt tolerance in transgenic Arabidopsis thaliana
    Lian, W. H.
    Sun, R.
    Zhang, L. X.
    Sun, T. X.
    Hui, F.
    Feng, L.
    Zhao, Y.
    BIOLOGIA PLANTARUM, 2022, 66 : 83 - 95
  • [40] A receptor-like kinase gene (GbRLK) from Gossypium barbadense enhances salinity and drought-stress tolerance in Arabidopsis
    Zhao, Jun
    Gao, Yulong
    Zhang, Zhiyuan
    Chen, Tianzi
    Guo, Wangzhen
    Zhang, Tianzhen
    BMC PLANT BIOLOGY, 2013, 13