Magnetic Hot Spots in Closely Spaced Thick Gold Nanorings

被引:49
作者
Lorente-Crespo, Maria [1 ,2 ]
Wang, Li [3 ]
Ortuno, Ruben [4 ,5 ]
Garcia-Meca, Carlos [1 ]
Ekinci, Yasin [3 ]
Martinez, Alejandro [1 ]
机构
[1] Univ Politecn Valencia, Nanophoton Technol Ctr, Valencia 46022, Spain
[2] Heriot Watt Univ, Inst Sensors Signals & Syst, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Paul Scherrer Inst, Lab Micro & Nanotechnol, CH-5232 Villigen, Switzerland
[4] Univ Publ Navarra, TERALAB MmW THz IR, Pamplona 31006, Spain
[5] Univ Publ Navarra, Plasmon Lab, Pamplona 31006, Spain
关键词
Surface plasmons; plasmonic array; gold nanorings; optical magnetism; magnetic field enhancement; nanoantennas; RESONANCES; LIGHT; FIELD;
D O I
10.1021/nl400798s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Light-matter interaction at optical frequencies is mostly mediated by the electric component of the electromagnetic field, with the magnetic component usually being considered negligible. Recently, it has been shown that properly engineered metallic nanostructures can provide a magnetic response at optical frequencies originated from real or virtual flows of electric current in the structure. In this work, we demonstrate a magnetic plasmonic mode which emerges in closely spaced thick gold nanorings. The plasmonic resonance obtains a magnetic dipole character by sufficiently increasing the height of the nanorings. Numerical simulations show that a virtual current loop appears at resonance for sufficiently thick nanorings, resulting in a strong concentration of the magnetic field in the gap region (magnetic hot spot). We find that there is an optimum thickness that provides the maximum magnetic intensity enhancement (over 200-fold enhancement) and give an explanation of this observation. This strong magnetic resonance, observed both experimentally and theoretically, can be used to build new metamaterials and resonant loop nanoantennas at optical frequencies.
引用
收藏
页码:2654 / 2661
页数:8
相关论文
共 30 条
[11]   Controlling magnetic dipole transition with magnetic plasmonic structures [J].
Feng, Tianhua ;
Zhou, Ying ;
Liu, Dahe ;
Li, Jensen .
OPTICS LETTERS, 2011, 36 (12) :2369-2371
[12]   Low-Loss Multilayered Metamaterial Exhibiting a Negative Index of Refraction at Visible Wavelengths [J].
Garcia-Meca, Carlos ;
Hurtado, Juan ;
Marti, Javier ;
Martinez, Alejandro ;
Dickson, Wayne ;
Zayats, Anatoly V. .
PHYSICAL REVIEW LETTERS, 2011, 106 (06)
[13]   Diabolo Nanoantenna for Enhancing and Confining the Magnetic Optical Field [J].
Grosjean, T. ;
Mivelle, M. ;
Baida, F. I. ;
Burr, G. W. ;
Fischer, U. C. .
NANO LETTERS, 2011, 11 (03) :1009-1013
[14]  
Huang Z., 2006, PHYS REV B, V74, P1
[15]  
Landau L., 2013, Electrodynamics of Continuous Media
[16]   Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors [J].
Larsson, Elin M. ;
Alegret, Joan ;
Kall, Mikael ;
Sutherland, Duncan S. .
NANO LETTERS, 2007, 7 (05) :1256-1263
[17]  
Muhlschlegel P., 2005, SCIENCE, V308, P1607
[18]   Pronounced Effects of Anisotropy on Plasmonic Properties of Nanorings Fabricated by Electron Beam Lithography [J].
Near, Rachel ;
Tabor, Christopher ;
Duan, Jinsong ;
Pachter, Ruth ;
El-Sayed, Mostafa .
NANO LETTERS, 2012, 12 (04) :2158-2164
[19]   Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays [J].
Ortuno, R. ;
Garcia-Meca, C. ;
Rodriguez-Fortuno, F. J. ;
Marti, J. ;
Martinez, Alejandro .
PHYSICAL REVIEW B, 2009, 79 (07)
[20]   High Aspect Ratio Plasmonic Nanostructures for Sensing Applications [J].
Paeivaenranta, Birgit ;
Merbold, Hannes ;
Giannini, Reto ;
Buechi, Luca ;
Gorelick, Sergey ;
David, Christian ;
Loeffler, Joerg F. ;
Feurer, Thomas ;
Ekinci, Yasin .
ACS NANO, 2011, 5 (08) :6374-6382