Magnetic Hot Spots in Closely Spaced Thick Gold Nanorings

被引:49
作者
Lorente-Crespo, Maria [1 ,2 ]
Wang, Li [3 ]
Ortuno, Ruben [4 ,5 ]
Garcia-Meca, Carlos [1 ]
Ekinci, Yasin [3 ]
Martinez, Alejandro [1 ]
机构
[1] Univ Politecn Valencia, Nanophoton Technol Ctr, Valencia 46022, Spain
[2] Heriot Watt Univ, Inst Sensors Signals & Syst, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Paul Scherrer Inst, Lab Micro & Nanotechnol, CH-5232 Villigen, Switzerland
[4] Univ Publ Navarra, TERALAB MmW THz IR, Pamplona 31006, Spain
[5] Univ Publ Navarra, Plasmon Lab, Pamplona 31006, Spain
关键词
Surface plasmons; plasmonic array; gold nanorings; optical magnetism; magnetic field enhancement; nanoantennas; RESONANCES; LIGHT; FIELD;
D O I
10.1021/nl400798s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Light-matter interaction at optical frequencies is mostly mediated by the electric component of the electromagnetic field, with the magnetic component usually being considered negligible. Recently, it has been shown that properly engineered metallic nanostructures can provide a magnetic response at optical frequencies originated from real or virtual flows of electric current in the structure. In this work, we demonstrate a magnetic plasmonic mode which emerges in closely spaced thick gold nanorings. The plasmonic resonance obtains a magnetic dipole character by sufficiently increasing the height of the nanorings. Numerical simulations show that a virtual current loop appears at resonance for sufficiently thick nanorings, resulting in a strong concentration of the magnetic field in the gap region (magnetic hot spot). We find that there is an optimum thickness that provides the maximum magnetic intensity enhancement (over 200-fold enhancement) and give an explanation of this observation. This strong magnetic resonance, observed both experimentally and theoretically, can be used to build new metamaterials and resonant loop nanoantennas at optical frequencies.
引用
收藏
页码:2654 / 2661
页数:8
相关论文
共 30 条
[1]   Optical properties of gold nanorings -: art. no. 057401 [J].
Aizpurua, J ;
Hanarp, P ;
Sutherland, DS ;
Käll, M ;
Bryant, GW ;
de Abajo, FJG .
PHYSICAL REVIEW LETTERS, 2003, 90 (05) :4
[2]   The quest for magnetic plasmons at optical frequencies [J].
Alu, Andrea ;
Engheta, Nader .
OPTICS EXPRESS, 2009, 17 (07) :5723-5730
[3]  
Balanis ConstantineA., 2010, Antenna Theory, VThird
[4]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[5]   Probing the Magnetic Field of Light at Optical Frequencies [J].
Burresi, M. ;
van Oosten, D. ;
Kampfrath, T. ;
Schoenmaker, H. ;
Heideman, R. ;
Leinse, A. ;
Kuipers, L. .
SCIENCE, 2009, 326 (5952) :550-553
[6]   Metamagnetics with rainbow colors [J].
Cai, Wenshan ;
Chettiar, Uday K. ;
Yuan, Hsiao-Kuan ;
de Silva, Vashista C. ;
Kildishev, Alexander V. ;
Drachev, Vladimir P. ;
Shalaev, Vladimir M. .
OPTICS EXPRESS, 2007, 15 (06) :3333-3341
[7]   Probing the Ultimate Limits of Plasmonic Enhancement [J].
Ciraci, C. ;
Hill, R. T. ;
Mock, J. J. ;
Urzhumov, Y. ;
Fernandez-Dominguez, A. I. ;
Maier, S. A. ;
Pendry, J. B. ;
Chilkoti, A. ;
Smith, D. R. .
SCIENCE, 2012, 337 (6098) :1072-1074
[8]   Surface-Enhanced Raman Scattering from Metallic Nanostructures: Bridging the Gap between the Near-Field and Far-Field Responses [J].
Doherty, Matthew D. ;
Murphy, Antony ;
Pollard, Robert J. ;
Dawson, Paul .
PHYSICAL REVIEW X, 2013, 3 (01)
[9]   Extraordinary optical transmission through sub-wavelength hole arrays [J].
Ebbesen, TW ;
Lezec, HJ ;
Ghaemi, HF ;
Thio, T ;
Wolff, PA .
NATURE, 1998, 391 (6668) :667-669
[10]   Self-Assembled Plasmonic Nanoparticle Clusters [J].
Fan, Jonathan A. ;
Wu, Chihhui ;
Bao, Kui ;
Bao, Jiming ;
Bardhan, Rizia ;
Halas, Naomi J. ;
Manoharan, Vinothan N. ;
Nordlander, Peter ;
Shvets, Gennady ;
Capasso, Federico .
SCIENCE, 2010, 328 (5982) :1135-1138