On the exponential behaviour of stochastic evolution equations for non-Newtonian fluids

被引:6
|
作者
Razafimandimby, Paul Andre [1 ]
Sango, Mamadou [1 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
基金
新加坡国家研究基金会;
关键词
stochastic evolution equations; weak solution; asymptotic behaviour; non-Newtonian fluids; bipolar fluids; stabilization; NAVIER-STOKES EQUATIONS; MULTIPOLAR VISCOUS FLUIDS; MEASURE-VALUED SOLUTIONS; ASYMPTOTIC-BEHAVIOR; TURBULENT FLOWS; EXISTENCE; MODEL;
D O I
10.1080/00036811.2011.598861
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the exponential long-time behaviour of the stochastic evolution equations describing the motion of a non-Newtonian fluids excited by multiplicative noise. Some results on the exponential convergence in mean square and with probability one of the weak probabilistic solution to the stationary solutions are given. We also prove an interesting result related to the stabilization of these stochastic evolution equations.
引用
收藏
页码:2217 / 2233
页数:17
相关论文
共 50 条
  • [21] On the dynamic instability of non-Newtonian fluids driven by gravity
    Jiang, Han
    Wang, Jialiang
    Zhang, Yajie
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (02) : 825 - 846
  • [22] Partial regularity of a certain class of non-Newtonian fluids
    Tan, Zhong
    Zhou, Jianfeng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1529 - 1558
  • [23] On stochastic evolution equations for nonlinear bipolar fluids: Well-posedness and some properties of the solution
    Hausenblas, Erika
    Razafimandimby, Paul Andre
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 441 (02) : 763 - 800
  • [24] Flow of non-Newtonian fluids
    Avram, Marius Andrei
    Avram, Marioara
    Iliescu, Ciprian
    Bragaru, Adina
    2006 INTERNATIONAL SEMICONDUCTOR CONFERENCE, VOLS 1 AND 2, 2007, : 463 - +
  • [25] Regularity of Non-Newtonian Fluids
    Hyeong-Ohk Bae
    Bum Ja Jin
    Journal of Mathematical Fluid Mechanics, 2014, 16 : 225 - 241
  • [26] Codimensional Non-Newtonian Fluids
    Zhu, Bo
    Lee, Minjae
    Quigley, Ed
    Fedkiw, Ronald
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04):
  • [27] Stochastic non-Newtonian fluid motion equations of a nonlinear bipolar viscous fluid
    Chen, Jianwen
    Chen, Zhi-Min
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (02) : 486 - 509
  • [28] Remarks on the energy equality for the non-Newtonian fluids
    Zhang, Zujin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 480 (02)
  • [29] NOTE ON THE PROBLEM OF COMPRESSIBLE NON-NEWTONIAN FLUIDS
    Caggio, M.
    Necasova, S.
    CONFERENCE TOPICAL PROBLEMS OF FLUID MECHANICS 2019: PROCEEDINGS, 2019, : 31 - 36
  • [30] Time decay of solutions for compressible isentropic non-Newtonian fluids
    Wang, Jialiang
    Jiang, Han
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)