Mean field theory for sigmoid belief networks

被引:205
作者
Saul, LK
Jaakkola, T
Jordan, MI
机构
[1] Ctr. for Biol./Compl. Learning, Massachusetts Inst. of Technology, Cambridge, MA 02139, 79 Amherst Street
关键词
D O I
10.1613/jair.251
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop a mean field theory for sigmoid belief networks based on ideas from statistical mechanics. Our mean field theory provides a tractable approximation to the true probability distribution in these networks; it also yields a lower bound on the likelihood of evidence. We demonstrate the utility of this framework on a benchmark problem in statistical pattern recognition-the classification of handwritten digits.
引用
收藏
页码:61 / 76
页数:16
相关论文
共 25 条
[1]  
ACKLEY DH, 1985, COGNITIVE SCI, V9, P147
[2]   Operations for Learning with Graphical Models [J].
Buntine, Wray L. .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1994, 2 :159-225
[3]   THE COMPUTATIONAL-COMPLEXITY OF PROBABILISTIC INFERENCE USING BAYESIAN BELIEF NETWORKS [J].
COOPER, GF .
ARTIFICIAL INTELLIGENCE, 1990, 42 (2-3) :393-405
[4]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[5]   APPROXIMATING PROBABILISTIC INFERENCE IN BAYESIAN BELIEF NETWORKS IS NP-HARD [J].
DAGUM, P ;
LUBY, M .
ARTIFICIAL INTELLIGENCE, 1993, 60 (01) :141-153
[6]   THE HELMHOLTZ MACHINE [J].
DAYAN, P ;
HINTON, GE ;
NEAL, RM ;
ZEMEL, RS .
NEURAL COMPUTATION, 1995, 7 (05) :889-904
[7]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[8]  
FREY B, 1995, ADV NEURAL INFORMATI
[9]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[10]  
Hertz J., 1991, Introduction to the Theory of Neural Computation