Is the Sherrington-Kirkpatrick model relevant for real spin glasses?

被引:12
|
作者
Young, A. P. [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA
关键词
D O I
10.1088/1751-8113/41/32/324016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
I describe the results of numerical simulations which test whether the Sherrington-Kirkpatrick model, which was solved by Parisi, applies to short-range spin glasses. I conclude that it probably does for dimension d greater than 6, but there appear to be some differences in lower dimensions. In particular, there does not appear to be the line of transitions in a magnetic field ( AT line) which is seen in the SK model.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Extremal optimization for Sherrington-Kirkpatrick spin glasses
    S. Boettcher
    The European Physical Journal B - Condensed Matter and Complex Systems, 2005, 46 : 501 - 505
  • [2] Extremal optimization for Sherrington-Kirkpatrick spin glasses
    Boettcher, S
    EUROPEAN PHYSICAL JOURNAL B, 2005, 46 (04): : 501 - 505
  • [3] ABOUT THE ORIGINAL SHERRINGTON-KIRKPATRICK MODEL OF SPIN-GLASSES
    TOUBOL, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (05): : 617 - 622
  • [4] SOME COMMENTS ON THE SHERRINGTON-KIRKPATRICK MODEL OF SPIN-GLASSES
    FROHLICH, J
    ZEGARLINSKI, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 112 (04) : 553 - 566
  • [5] Percolation in the Sherrington-Kirkpatrick spin glass
    Machta, J.
    Newman, C. M.
    Stein, D. L.
    IN AND OUT OF EQUILIBRIUM 2, 2008, 60 : 527 - +
  • [6] Sherrington-Kirkpatrick model for spin glasses: Solution via the distributional zeta function method
    Rodriguez-Camargo, C. D.
    Mojica-Nava, E. A.
    Svaiter, N. F.
    PHYSICAL REVIEW E, 2021, 104 (03)
  • [7] Relative entropy in the Sherrington-Kirkpatrick spin glass model
    Varga, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (36): : 7773 - 7778
  • [8] Compressible Sherrington-Kirkpatrick spin-glass model
    Liarte, Danilo B.
    Salinas, Silvio R.
    Yokoi, Carlos S. O.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (20)
  • [9] Stability of the quantum Sherrington-Kirkpatrick spin glass model
    Young, A. P.
    PHYSICAL REVIEW E, 2017, 96 (03)
  • [10] On the distribution of overlaps in the Sherrington-Kirkpatrick spin glass model
    Ledoux, M
    JOURNAL OF STATISTICAL PHYSICS, 2000, 100 (5-6) : 871 - 892