Boundary value problems for second-order nonlinear difference equations with discrete φ-Laplacian and singular φ

被引:63
作者
Bereanu, Cristian [1 ]
Mawhin, Jean [1 ]
机构
[1] Univ Catholique Louvain, Dept Math, B-1348 Louvain, Belgium
关键词
discrete phi-Laplacian; Dirichlet problem; Neumann problem; periodic solutions; Brouwer degree;
D O I
10.1080/10236190802332290
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence and multiplicity of solutions for boundary value problems of the type del[phi(Delta x(k))] + f(k)(x(k), Delta x(k)) = 0 (2 <= k <= n-1), l(x, Delta x) = 0, where phi : (-a, a) -> R denotes an increasing homeomorphism such that phi(0) = 0 and 0 < a < infinity, l(x, Delta x) = 0 denotes the Dirichlet, periodic or Neumann boundary conditions and f(k) (2 <= k <= n - 1) are continuous functions. Our main tool is Brouwer degree together with fixed point reformulations of the above problems.
引用
收藏
页码:1099 / 1118
页数:20
相关论文
共 12 条
[1]  
Agarwal R. P., 1997, Math. Appl., V404
[2]   Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian [J].
Bereanu, C. ;
Mawhin, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) :536-557
[3]   Periodic solutions of second order nonlinear difference equations with discrete φ-Laplacian [J].
Bereanu, C. ;
Thompson, H. B. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (02) :1002-1015
[4]   Existence and multiplicity results for periodic solutions of nonlinear difference equations [J].
Bereanu, C. ;
Mawhin, J. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (07) :677-695
[5]  
Bereanu C, 2006, MATH BOHEM, V131, P145
[6]   Existence and comparison results for difference φ-Laplacian boundary value problems with lower and upper solutions in reverse order [J].
Cabada, A ;
Otero-Espinar, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 267 (02) :501-521
[7]  
Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[8]   ON THE CONNECTIVITY PROPERTIES OF THE SOLUTION SET OF PARAMETRIZED FAMILIES OF COMPACT VECTOR-FIELDS [J].
MASSABO, I ;
PEJSACHOWICZ, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 59 (02) :151-166
[9]   MULTIPLE SOLUTIONS OF THE PERIODIC BOUNDARY-VALUE PROBLEM FOR SOME FORCED PENDULUM-TYPE EQUATIONS [J].
MAWHIN, J ;
WILLEM, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 52 (02) :264-287
[10]   Continuation theorems for Ambrosetti-Prodi type periodic problems [J].
Mawhin, J ;
Rebelo, C ;
Zanolin, F .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (01) :87-126