Asynchronous Brain Computer Interface using Hidden Semi-Markov Models

被引:0
|
作者
Oliver, Gareth [1 ]
Sunehag, Peter [1 ]
Gedeon, Tom [1 ]
机构
[1] Australian Natl Univ, Res Sch Comp Sci, Canberra, ACT 0200, Australia
关键词
CLASSIFICATION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Ideal Brain Computer Interfaces need to perform asynchronously and at real time. We propose Hidden Semi-Markov Models(HSMM) to better segment and classify EEG data. The proposed HSMM method was tested against a simple windowed method on standard datasets. We found that our HSMM outperformed the simple windowed method. Furthermore, due to the computational demands of the algorithm, we adapted the HSMM algorithm to an online setting and demonstrate that this faster version of the algorithm can run in real time.
引用
收藏
页码:2728 / 2731
页数:4
相关论文
共 50 条
  • [21] Scalable Bayesian Inference for Coupled Hidden Markov and Semi-Markov Models
    Touloupou, Panayiota
    Finkenstadt, Barbel
    Spencer, Simon E. F.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (02) : 238 - 249
  • [22] hhsmm: an R package for hidden hybrid Markov/semi-Markov models
    Amini, Morteza
    Bayat, Afarin
    Salehian, Reza
    COMPUTATIONAL STATISTICS, 2023, 38 (03) : 1283 - 1335
  • [23] Combining Cattle Activity and Progesterone Measurements Using Hidden Semi-Markov Models
    O'Connell, Jared
    Togersen, Frede Aakmann
    Friggens, Nicolas C.
    Lovendahl, Peter
    Hojsgaard, Soren
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2011, 16 (01) : 1 - 16
  • [24] Combining Cattle Activity and Progesterone Measurements Using Hidden Semi-Markov Models
    Jared O’Connell
    Frede Aakmann Tøgersen
    Nicolas C. Friggens
    Peter Løvendahl
    Søren Højsgaard
    Journal of Agricultural, Biological, and Environmental Statistics, 2011, 16 : 1 - 16
  • [25] Hidden hybrid Markov/semi-Markov chains
    Guédon, Y
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 49 (03) : 663 - 688
  • [26] hsmm - An R package for analyzing hidden semi-Markov models
    Bulla, Jan
    Bulla, Ingo
    Nenadic, Oleg
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (03) : 611 - 619
  • [27] Optimal Detection and Error Exponents for Hidden Semi-Markov Models
    Bajovic, Dragana
    He, Kanghang
    Stankovic, Lina
    Vukobratovic, Dejan
    Stankovic, Vladimir
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (05) : 1077 - 1092
  • [28] Recursive maximum likelihood estimation for hidden semi-Markov models
    Squire, K
    Levinson, SE
    2005 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2005, : 329 - 334
  • [29] Modified hidden semi-Markov models for motor wear prognosis
    Wu, X.
    Li, Y.
    Teng, W.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2012, 226 (J2) : 174 - 179
  • [30] Hidden semi-Markov models for machinery health diagnosis and prognosis
    Dong, M
    He, D
    TRANSACTIONS OF THE NORTH AMERICAN MANUFACTURING RESEARCH INSTITUTION OF SME, VOL 32, 2004, 2004, : 199 - 206