BASNet: Boundary-Aware Salient Object Detection

被引:1135
作者
Qin, Xuebin [1 ]
Zhang, Zichen [1 ]
Huang, Chenyang [1 ]
Gao, Chao [1 ]
Dehghan, Masood [1 ]
Jagersand, Martin [1 ]
机构
[1] Univ Alberta, Edmonton, AB, Canada
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
D O I
10.1109/CVPR.2019.00766
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Convolutional Neural Networks have been adopted for salient object detection and achieved the state-of-the-art performance. Most of the previous works however focus on region accuracy but not on the boundary quality. In this paper,we propose a predict-refine architecture, BASNet, and a new hybrid loss for Boundary-Aware Salient object detection. Specifically, the architecture is composed of a densely supervised Encoder-Decoder network and a residual refinement module, which are respectively in charge of saliency prediction and saliency map refinement. The hybrid loss guides the network to learn the transformation between the input image and the ground truth in a three-level hierarchy -pixel-, patch- and map- level- by fusing Binary Cross Entropy (BCE), Structural SIMilarity (SSIM) and Intersection-over-Union (IoU) losses. Equipped with the hybrid loss, the proposed predict-refine architecture is able to effectively segment the salient object regions and accurately predict the fine structures with clear boundaries. Experimental results on six public datasets show that our method outperforms the state-of-the-art methods both in terms of regional and boundary evaluation measures. Our method runs at over 25 fps on a single GPU. The code is available at: https://github.com/NathanUA/BASNet.
引用
收藏
页码:7471 / 7481
页数:11
相关论文
共 80 条
  • [1] Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
  • [2] [Anonymous], 2017, CVPR
  • [3] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [4] Salient Object Detection: A Benchmark
    Borji, Ali
    Sihite, Dicky N.
    Itti, Laurent
    [J]. COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 : 414 - 429
  • [5] Chen Shuhan, 2018, COMP VIS ECCV 2018 1, P236
  • [6] A tutorial on the cross-entropy method
    De Boer, PT
    Kroese, DP
    Mannor, S
    Rubinstein, RY
    [J]. ANNALS OF OPERATIONS RESEARCH, 2005, 134 (01) : 19 - 67
  • [7] Deng ZJ, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P684
  • [8] Ehrig M, 2005, Proceedings of the K-CAP 2005 Workshop on Integrating Ontologies, P25
  • [9] Generalised Wasserstein Dice Score for Imbalanced Multi-class Segmentation Using Holistic Convolutional Networks
    Fidon, Lucas
    Li, Wenqi
    Garcia-Peraza-Herrera, Luis C.
    Ekanayake, Jinendra
    Kitchen, Neil
    Ourselin, Sebastien
    Vercauteren, Tom
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 : 64 - 76
  • [10] Girshick R., 2014, IEEE COMP SOC C COMP, DOI [10.1109/CVPR.2014.81, DOI 10.1109/CVPR.2014.81]