Highly efficient capture of circulating tumor cells with low background signals by using pyramidal microcavity array

被引:17
|
作者
Yin, Jiaxiang [1 ,2 ,3 ]
Mou, Lei [2 ]
Yang, Mingzhu [2 ]
Zou, Wenwu [1 ]
Du, Chang [1 ,3 ,4 ]
Zhang, Wei [2 ]
Jiang, Xingyu [2 ,5 ,6 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Dept Biomed Engn, Guangzhou 510641, Guangdong, Peoples R China
[2] Natl Ctr NanoSci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Biomed Effects Nanomat & Nanosafety, Beijing Engn Res Ctr BioNanotechnol, 11 Zhongguancun Beiyitiao, Beijing 100190, Peoples R China
[3] South China Univ Technol, Natl Engn Res Ctr Tissue Restorat & Reconstruct, Guangzhou 510006, Guangdong, Peoples R China
[4] Minist Educ, Key Lab Biomed Mat Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China
[5] Southern Univ Sci & Technol, Dept Biomed Engn, 1088 Xueyuan Rd, Shenzhen 518055, Guangdong, Peoples R China
[6] Univ Chinese Acad Sci, 19 A Yuquan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
CTCs; Efficient capture; Low background signals; Pyramidal MCA; SPIRAL MICROCHANNEL; CANCER-PATIENTS; LUNG-CANCER; SIZE; ENRICHMENT; SEPARATION; DEFORMABILITY; NANOPARTICLES; DEVICE; BLOOD;
D O I
10.1016/j.aca.2019.01.054
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This report demonstrates that a microfluidic device with integrated silicon filter exhibits outstanding capture efficiency and superior enrichment purity when employed to separate tumor cells from whole blood samples. We fabricate the silicon filter with pyramidal microcavity array (MCA) by micro-fabrication. We design the structure of the cavity to efficiently enrich tumor cells, while allowing hematologic cells to deform and pass through. The capture efficiency of MCF-7, SW620 and Hela cells spiked in 1 mL of whole blood are approximately 80%. Unwanted white blood cells (WBCs) trapped on the MCA are below 0.003%. In addition, this microfluidic device successfully identifies circulating tumor cells (CTCs) in 5 of 6 patients' blood samples, with a range of 5-86 CTCs per mL. These results reveal that the disposable microfluidic device can effectively enrich tumor cells with different sizes and various morphologies, while maintaining high capture efficiency and purity. Therefore, this label-free technique can serve as a versatile platform to facilitate CTCs analysis in diverse biochemical applications. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 141
页数:9
相关论文
共 50 条
  • [11] DEVELOPMENT OF A NOVEL CIRCULATING TUMOR CELLS ISOLATION SYSTEM IN PATIENTS WITH PANCREATIC CANCER USING A MICROCAVITY ARRAY
    Ofuji, Kazuya
    Takahashi, Kazuto
    Nosaka, Takuto
    Naito, Tatsushi
    Matsuda, Hidetaka
    Ohtani, Masahiro
    Hiramatsu, Katsushi
    Nemoto, Tomoyuki
    Nakamoto, Yasunari
    GASTROENTEROLOGY, 2019, 156 (06) : S319 - S319
  • [12] Development of a Novel Circulating Tumor Cells Isolation System in Patients with Hepatocellular Carcinoma Using a Microcavity Array
    Takahashi, Kazuto
    Ofujil, Kazuya
    Nosaka, Takuto
    Ozaki, Yoshihiko
    Matsuda, Hidetaka
    Ohtani, Masahiro
    Hiramatsu, Katsushi
    Nemoto, Tomoyuki
    Tatsuya, Matsunaga
    Nakamoto, Yasunari
    HEPATOLOGY, 2016, 64 : 632A - 633A
  • [13] Antifouling Gold-Inlaid BSA Coating for the Highly Efficient Capture of Circulating Tumor Cells
    Li, Shuming
    Wang, Ke
    Hao, Shasha
    Dang, Fuquan
    Zhang, Zhi-Qi
    Zhang, Jing
    ANALYTICAL CHEMISTRY, 2022, 94 (18) : 6754 - 6759
  • [14] 3D Artificial Fiber Device for Highly Efficient Capture of Circulating Tumor Cells
    Liu, Kan
    Zhang, Nangang
    Deng, Yuliang
    Liu, Wei
    Guo, Shishang
    Xiong, Bin
    Tseng, Hisan-Rong
    Zhao, Xing-Zhong
    PROCEEDING OF THE THIRD WORLD CONFERENCE ON 3D FABRICS AND THEIR APPLICATIONS, 2010, : 168 - 171
  • [15] Capture of circulating tumor cells with a highly efficient nanostructured silicon substrates with integrated chaotic micromixers
    Wang, Shutao
    Liu, Kan
    Liu, Jian
    Yu, Zeta T. -F.
    Xu, Xiaowen
    Zhao, Libo
    Lee, Tom
    Lee, Eun Kyung
    Reiss, Jean
    Lee, Yi-Kuen
    Chung, Leland W. K.
    Huang, Jiaoti
    Rettig, Matthew
    Seligson, David
    Duraiswamy, Kumaran N.
    Shen, Clifton K. -F.
    Tseng, Hsian-Rong
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2011, 40 : 235 - 235
  • [16] Circulating tumor cells detected with a microcavity array predict clinical outcome in hepatocellular carcinoma
    Takahashi, Kazuto
    Ofuji, Kazuya
    Hiramatsu, Katsushi
    Nosaka, Takuto
    Naito, Tatsushi
    Matsuda, Hidetaka
    Endo, Katsuya
    Higuchi, Masayuki
    Ohtani, Masahiro
    Nemoto, Tomoyuki
    Nakamoto, Yasunari
    CANCER MEDICINE, 2021, 10 (07): : 2300 - 2309
  • [17] Size-Based Isolation of Circulating Tumor Cells in Lung Cancer Patients Using a Microcavity Array System
    Hosokawa, Masahito
    Kenmotsu, Hirotsugu
    Koh, Yasuhiro
    Yoshino, Tomoko
    Yoshikawa, Takayuki
    Naito, Tateaki
    Takahashi, Toshiaki
    Murakami, Haruyasu
    Nakamura, Yukiko
    Tsuya, Asuka
    Shukuya, Takehito
    Ono, Akira
    Akamatsu, Hiroaki
    Watanabe, Reiko
    Ono, Sachiyo
    Mori, Keita
    Kanbara, Hisashige
    Yamaguchi, Ken
    Tanaka, Tsuyoshi
    Matsunaga, Tadashi
    Yamamoto, Nobuyuki
    PLOS ONE, 2013, 8 (06):
  • [18] Detection of AXL expression in circulating tumor cells of lung cancer patients using an automated microcavity array system
    Ikeda, Mio
    Koh, Yasuhiro
    Teraoka, Shunsuke
    Sato, Koichi
    Kanai, Kuninobu
    Hayata, Atsushi
    Tokudome, Nahomi
    Akamatsu, Hiroaki
    Ozawa, Yuichi
    Akamatsu, Keiichiro
    Endo, Katsuya
    Higuchi, Masayuki
    Nakanishi, Masanori
    Ueda, Hiroki
    Yamamoto, Nobuyuki
    CANCER MEDICINE, 2020, 9 (06): : 2122 - 2133
  • [19] Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays
    Peng Xue
    Yafeng Wu
    Jinhong Guo
    Yuejun Kang
    Biomedical Microdevices, 2015, 17
  • [20] Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays
    Xue, Peng
    Wu, Yafeng
    Guo, Jinhong
    Kang, Yuejun
    BIOMEDICAL MICRODEVICES, 2015, 17 (02)