Growth and optical properties of silver nanostructures obtained on connected anodic aluminum oxide templates

被引:17
作者
Giallongo, G. [1 ,2 ]
Durante, C. [1 ,2 ]
Pilot, R. [1 ,2 ]
Garoli, D. [3 ]
Bozio, R. [1 ,2 ]
Romanato, F. [3 ]
Gennaro, A. [1 ,2 ]
Rizzi, G. A. [1 ,2 ]
Granozzi, G. [1 ,2 ]
机构
[1] Univ Padua, Dept Chem Sci, I-35131 Padua, Italy
[2] Univ Padua, INSTM Res Unit, I-35131 Padua, Italy
[3] LaNN Lab Nanofabricat Nanodevices, Padua, Italy
关键词
SERS; DEPOSITION; FABRICATION; NANORODS; NICKEL; ARRAYS;
D O I
10.1088/0957-4484/23/32/325604
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ag nanostructures are grown by AC electrodeposition on anodic alumina oxide (AAO) connected membranes acting as templates. Depending on the thickness of the template and on the voltage applied during the growth process, different Ag nanostructures with different optical properties are obtained. When AAO membranes about 1 mu m thick are used, the Ag nanostructures consist in Ag nanorods, at the bottom of the pores, and Ag nanotubes departing from the nanorods and filling the pores almost for the whole length. When AAO membranes about 3 mu m thick are used, the nanostructures are Ag spheroids, at the bottom of the pores, and Ag nanowires that do not reach the upper part of the alumina pores. The samples are characterized by angle resolved x-ray photoelectron spectroscopy, scanning electron microscopy and UV-vis and Raman spectroscopies. A simple NaOH etching procedure, followed by sonication in ethanol, allows one to obtain an exposed ordered array of Ag nanorods, suitable for surface-enhanced Raman spectroscopy, while in the other case (3 mu m thick AAO membranes) the sample can be used in localized surface plasmon resonance sensing.
引用
收藏
页数:10
相关论文
共 42 条
[1]   Measurement of the absolute Raman scattering cross section of the 1584-cm-1 band of benzenethiol and the surface-enhanced Raman scattering cross section enhancement factor for femtosecond laser-nanostructured substrates [J].
Aggarwal, R. L. ;
Farrar, L. W. ;
Diebold, E. D. ;
Polla, D. L. .
JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (09) :1331-1333
[2]   Nanoimprinted SERS-active substrates with tunable surface plasmon resonances [J].
Alvarez-Puebla, Ramon ;
Cui, Bo ;
Bravo-Vasquez, Juan-Pablo ;
Veres, Teodor ;
Fenniri, Hicham .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (18) :6720-6723
[3]   Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS) [J].
Brown, Richard J. C. ;
Milton, Martin J. T. .
JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (10) :1313-1326
[4]   Electrocrystallization Nucleation and growth phenomena [J].
Budevski, E ;
Staikov, G ;
Lorenz, WJ .
ELECTROCHIMICA ACTA, 2000, 45 (15-16) :2559-2574
[5]   Gold Nanoparticle-Fluorophore Complexes: Sensitive and Discerning "Noses" for Biosystems Sensing [J].
Bunz, Uwe H. F. ;
Rotello, Vincent M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (19) :3268-3279
[6]  
Eftekhari A., 2008, Nanostructured Materials in Electrochemistry
[7]   OPTICAL PROPERTIES OF AG AND CU [J].
EHRENREICH, H ;
PHILIPP, HR .
PHYSICAL REVIEW, 1962, 128 (04) :1622-+
[8]   Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas [J].
Fromm, DP ;
Sundaramurthy, A ;
Kinkhabwala, A ;
Schuck, PJ ;
Kino, GS ;
Moerner, WE .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (06)
[9]   Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library [J].
Gao, Hanwei ;
Zhou, Wei ;
Odom, Teri W. .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (04) :529-539
[10]   Resonant field enhancements from metal nanoparticle arrays [J].
Genov, DA ;
Sarychev, AK ;
Shalaev, VM ;
Wei, A .
NANO LETTERS, 2004, 4 (01) :153-158