TUMOR CONTROL, ELIMINATION, AND ESCAPE THROUGH A COMPARTMENTAL MODEL OF DENDRITIC CELL THERAPY FOR MELANOMA

被引:6
作者
Dickman, Lauren R. [1 ]
Milliken, Evan [1 ]
Kuang, Yang [1 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85281 USA
基金
美国国家卫生研究院;
关键词
Hopf bifurcation; backward bifurcation; dendritic cell therapy; partial rank correlation coefficient; stability analysis; VACCINATION; PEPTIDE; CHEMOTHERAPY; TURNOVER; NUMBERS; NAIVE;
D O I
10.1137/19M1276303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Melanoma, the deadliest form of skin cancer, is regularly treated by surgery in conjunction with a targeted therapy or immunotherapy. Dendritic cell therapy is an immunotherapy that capitalizes on the critical role dendritic cells play in shaping the immune response. We formulate a mathematical model employing ordinary differential and delay differential equations to understand the effectiveness of dendritic cell vaccines, accounting for cell trafficking with a blood and tumor compartment. We reduce our model to a system of ordinary differential equations. Both models are validated using experimental data from melanoma-induced mice. The simplicity of our reduced model allows for mathematical analysis and admits rich dynamics observed in a clinical setting, such as periodic solutions and bistability. We give thresholds for tumor elimination and existence. Bistability, in which the model outcomes are sensitive to the initial conditions, emphasizes a need for more aggressive treatment strategies, since the reproduction number below unity is no longer sufficient for elimination. A sensitivity analysis exhibits the parameters most significantly impacting the reproduction number, thereby suggesting the most efficacious treatments to use together with a dendritic cell vaccine.
引用
收藏
页码:906 / 928
页数:23
相关论文
共 44 条
  • [1] Tumor-Specific Cytotoxic T Cells Are Crucial for Efficacy of Immunomodulatory Antibodies in Patients with Lung Cancer
    Aerts, Joachim G.
    Hegmans, Joost P.
    [J]. CANCER RESEARCH, 2013, 73 (08) : 2381 - 2388
  • [2] MATHEMATICAL MODELING OF IN-VIVO TUMOR-IMMUNE INTERACTIONS FOR THE CANCER IMMUNOTHERAPY USING MATURED DENDRITIC CELLS
    Arabameri, Abazar
    Asemani, Davud
    Hajati, Jamshid
    [J]. JOURNAL OF BIOLOGICAL SYSTEMS, 2018, 26 (01) : 167 - 188
  • [3] Qualitative differences between naive and memory T cells
    Berard, M
    Tough, DF
    [J]. IMMUNOLOGY, 2002, 106 (02) : 127 - 138
  • [4] Favorable overall survival in stage III melanoma patients after adjuvant dendritic cell vaccination
    Bol, Kalijn F.
    Aarntzen, Erik H. J. G.
    in 't Hout, Florentien E. M.
    Schreibelt, Gerty
    Creemers, Jeroen H. A.
    Lesterhuis, W. Joost
    Gerritsen, Winald R.
    Grunhagen, Dirk J.
    Verhoef, Cornelis
    Punt, Cornelis J. A.
    Bonenkamp, Johannes J.
    de Wilt, Johannes H. W.
    Figdor, Carl G.
    de Vries, I. Jolanda M.
    [J]. ONCOIMMUNOLOGY, 2016, 5 (01):
  • [5] Burden T, 2004, DISCRETE CONT DYN-B, V4, P135
  • [6] Determination of the optimal therapeutic protocols in cancer immunotherapy
    Cappuccio, Antonio
    Castiglione, Filippo
    Piccoli, Benedetto
    [J]. MATHEMATICAL BIOSCIENCES, 2007, 209 (01) : 1 - 13
  • [7] Optimal control in a model of dendritic cell transfection cancer immunotherapy
    Castiglione, F
    Piccoli, B
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2006, 68 (02) : 255 - 274
  • [8] Dynamical models of tuberculosis and their applications
    Castillo-Chavez, C
    Song, BJ
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2004, 1 (02) : 361 - 404
  • [9] Enhancing dendritic cell immunotherapy for melanoma using a simple mathematical model
    Castillo-Montiel, E.
    Chimal-Eguia, J. C.
    Ignacio Tello, J.
    Pinon-Zarate, G.
    Herrera-Enriquez, M.
    Castell-Rodriguez, A. E.
    [J]. THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2015, 12
  • [10] Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls
    de Pillis, L. G.
    Gu, W.
    Fister, K. R.
    Head, T.
    Maples, K.
    Murugan, A.
    Neal, T.
    Yoshida, K.
    [J]. MATHEMATICAL BIOSCIENCES, 2007, 209 (01) : 292 - 315