Thermal spin pumping and magnon-phonon-mediated spin-Seebeck effect

被引:124
|
作者
Uchida, K. [1 ,2 ]
Ota, T. [1 ,2 ]
Adachi, H. [2 ,3 ]
Xiao, J. [4 ,5 ]
Nonaka, T. [1 ,2 ]
Kajiwara, Y. [1 ,2 ]
Bauer, G. E. W. [1 ,6 ]
Maekawa, S. [2 ,3 ]
Saitoh, E. [1 ,2 ,3 ,7 ]
机构
[1] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[2] Japan Sci & Technol Agcy, CREST, Tokyo 1020075, Japan
[3] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan
[4] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[5] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[6] Delft Univ Technol, Kavli Inst NanoSci, NL-2628 CJ Delft, Netherlands
[7] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
关键词
ROOM-TEMPERATURE; FERROMAGNET; TRANSPORT; INJECTION;
D O I
10.1063/1.4716012
中图分类号
O59 [应用物理学];
学科分类号
摘要
The spin-Seebeck effect (SSE) in ferromagnetic metals and insulators has been investigated systematically by means of the inverse spin-Hall effect (ISHE) in paramagnetic metals. The SSE generates a spin voltage as a result of a temperature gradient in a ferromagnet, which injects a spin current into an attached paramagnetic metal. In the paramagnet, this spin current is converted into an electric field due to the ISHE, enabling the electric detection of the SSE. The observation of the SSE is performed in longitudinal and transverse configurations consisting of a ferromagnet/paramagnet hybrid structure, where thermally generated spin currents flowing parallel and perpendicular to the temperature gradient are detected, respectively. Our results explain the SSE in terms of a two-step process: (1) the temperature gradient creates a non-equilibrium state in the ferromagnet governed by both magnon and phonon propagations and (2) the non-equilibrium between magnons in the ferromagnet and electrons in the paramagnet at the contact interface leads to "thermal spin pumping" and the ISHE signal. The non-equilibrium state of metallic magnets (e.g., Ni81Fe19) under a temperature gradient is governed mainly by the phonons in the sample and the substrate, while in insulating magnets (e.g., Y3Fe5O12), both magnon and phonon propagations appear to be important. The phonon-mediated non-equilibrium that drives the thermal spin pumping is confirmed also by temperature-dependent measurements, giving rise to a giant enhancement of the SSE signals at low temperatures. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4716012]
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Spin pumping and inverse spin Hall effect in germanium
    Rojas-Sanchez, J. -C.
    Cubukcu, M.
    Jain, A.
    Vergnaud, C.
    Portemont, C.
    Ducruet, C.
    Barski, A.
    Marty, A.
    Vila, L.
    Attane, J. -P.
    Augendre, E.
    Desfonds, G.
    Gambarelli, S.
    Jaffres, H.
    George, J. -M.
    Jamet, M.
    PHYSICAL REVIEW B, 2013, 88 (06)
  • [32] Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene
    Rameshti, Babak Zare
    Moghaddam, Ali G.
    PHYSICAL REVIEW B, 2015, 91 (15):
  • [33] A robust spin-dependent Seebeck effect and remarkable spin thermoelectric performance in graphether nanoribbons
    Jiang, Yue
    Guo, Yan-Dong
    Lin, Li-Yan
    Yan, Xiao-Hong
    NANOSCALE, 2022, 14 (28) : 10033 - 10040
  • [34] Frequency dependence of the longitudinal spin Seebeck effect
    Xu, Yong
    Zhao, Weisheng
    Mangin, Stephane
    PHYSICAL REVIEW B, 2018, 98 (14)
  • [35] Microscopic Theory of Spin Seebeck Effect in Antiferromagnets
    Masuda, Keisuke
    Sato, Masahiro
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2024, 93 (03)
  • [36] Magneto-Seebeck effect in spin valves
    Zhang, X. M.
    Wan, C. H.
    Wu, H.
    Tang, P.
    Yuan, Z. H.
    Zhang, Q. T.
    Zhang, X.
    Tao, B. S.
    Fang, C.
    Han, X. F.
    JOURNAL OF APPLIED PHYSICS, 2017, 122 (14)
  • [37] The temperature dependence of quantum spin pumping generated using electron spin resonance with three-magnon splittings
    Nakata, Kouki
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (11)
  • [38] Microwave control of thermal-magnon spin transport
    Liu, J.
    Feringa, F.
    Flebus, B.
    Cornelissen, L. J.
    Leutenantsmeyer, J. C.
    Duine, R. A.
    van Wees, B. J.
    PHYSICAL REVIEW B, 2019, 99 (05)
  • [39] Magnetic dynamics driven by the spin current generated via the spin Seebeck effect
    Jia, Chenglong
    Berakdar, Jamal
    PHYSICAL REVIEW B, 2011, 83 (18)
  • [40] Magneto-Seebeck effect in spin-valve with in-plane thermal gradient
    Jain, S.
    Lam, D. D.
    Bose, A.
    Sharma, H.
    Palkar, V. R.
    Tomy, C. V.
    Suzuki, Y.
    Tulapurkar, A. A.
    AIP ADVANCES, 2014, 4 (12):