Thermal spin pumping and magnon-phonon-mediated spin-Seebeck effect

被引:124
|
作者
Uchida, K. [1 ,2 ]
Ota, T. [1 ,2 ]
Adachi, H. [2 ,3 ]
Xiao, J. [4 ,5 ]
Nonaka, T. [1 ,2 ]
Kajiwara, Y. [1 ,2 ]
Bauer, G. E. W. [1 ,6 ]
Maekawa, S. [2 ,3 ]
Saitoh, E. [1 ,2 ,3 ,7 ]
机构
[1] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[2] Japan Sci & Technol Agcy, CREST, Tokyo 1020075, Japan
[3] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan
[4] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[5] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[6] Delft Univ Technol, Kavli Inst NanoSci, NL-2628 CJ Delft, Netherlands
[7] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
关键词
ROOM-TEMPERATURE; FERROMAGNET; TRANSPORT; INJECTION;
D O I
10.1063/1.4716012
中图分类号
O59 [应用物理学];
学科分类号
摘要
The spin-Seebeck effect (SSE) in ferromagnetic metals and insulators has been investigated systematically by means of the inverse spin-Hall effect (ISHE) in paramagnetic metals. The SSE generates a spin voltage as a result of a temperature gradient in a ferromagnet, which injects a spin current into an attached paramagnetic metal. In the paramagnet, this spin current is converted into an electric field due to the ISHE, enabling the electric detection of the SSE. The observation of the SSE is performed in longitudinal and transverse configurations consisting of a ferromagnet/paramagnet hybrid structure, where thermally generated spin currents flowing parallel and perpendicular to the temperature gradient are detected, respectively. Our results explain the SSE in terms of a two-step process: (1) the temperature gradient creates a non-equilibrium state in the ferromagnet governed by both magnon and phonon propagations and (2) the non-equilibrium between magnons in the ferromagnet and electrons in the paramagnet at the contact interface leads to "thermal spin pumping" and the ISHE signal. The non-equilibrium state of metallic magnets (e.g., Ni81Fe19) under a temperature gradient is governed mainly by the phonons in the sample and the substrate, while in insulating magnets (e.g., Y3Fe5O12), both magnon and phonon propagations appear to be important. The phonon-mediated non-equilibrium that drives the thermal spin pumping is confirmed also by temperature-dependent measurements, giving rise to a giant enhancement of the SSE signals at low temperatures. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4716012]
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Antiferromagnetic Spin Seebeck Effect
    Wu, Stephen M.
    Zhang, Wei
    Amit, K. C.
    Borisov, Pavel
    Pearson, John E.
    Jiang, J. Samuel
    Lederman, David
    Hoffmann, Axel
    Bhattacharya, Anand
    PHYSICAL REVIEW LETTERS, 2016, 116 (09)
  • [22] Spin current injection by spin Seebeck and spin pumping effects in yttrium iron garnet/Pt structures
    da Silva, G. L.
    Vilela-Leao, L. H.
    Rezende, S. M.
    Azevedo, A.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (07)
  • [23] Enhancement of the Spin Pumping Effect by Magnon Confluence Process in YIG/Pt Bilayers
    Noack, Timo B.
    Vasyuchka, Vitaliy I.
    Bozhko, Dmytro A.
    Heinz, Bjoern
    Frey, Pascal
    Slobodianiuk, Denys V.
    Prokopenko, Oleksandr V.
    Melkov, Gennadii A.
    Kopietz, Peter
    Hillebrands, Burkard
    Serga, Alexander A.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2019, 256 (09):
  • [24] Enhancement of spin-Seebeck effect by inserting ultra-thin Fe70Cu30 interlayer
    Kikuchi, D.
    Ishida, M.
    Uchida, K.
    Qiu, Z.
    Murakami, T.
    Saitoh, E.
    APPLIED PHYSICS LETTERS, 2015, 106 (08)
  • [25] Electrical control of the spin-Seebeck coefficient in graphene nanoribbons with asymmetric zigzag edge extensions
    Mousavi, Fatemeh Mazhari
    Farghadan, Rouhollah
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (44) : 27195 - 27203
  • [26] Spin Seebeck effect at microwave frequencies
    Schreier, Michael
    Kramer, Franz
    Huebl, Hans
    Gepraegs, Stephan
    Gross, Rudolf
    Goennenwein, Sebastian T. B.
    Noack, Timo
    Langner, Thomas
    Serga, Alexander A.
    Hillebrands, Burkard
    Vasyuchka, Vitaliy I.
    PHYSICAL REVIEW B, 2016, 93 (22)
  • [27] Spin-dependent Seebeck effect in non-local spin valve devices
    Erekhinsky, Mikhail
    Casanova, Felix
    Schuller, Ivan K.
    Sharoni, Amos
    APPLIED PHYSICS LETTERS, 2012, 100 (21)
  • [28] Low energy dissipation readout of single-molecule ferroelectronic states by a spin-Seebeck signal
    Fu, Hua-Hua
    Wu, Dan-Dan
    Du, Gui-Fang
    Liu, Qing-Bo
    Wu, Menghao
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [29] Spin Seebeck Effect as a Probe for Majorana Fermions in Kitaev Spin Liquids
    Kato, Yasuyuki
    Nasu, Joji
    Sato, Masahiro
    Okubo, Tsuyoshi
    Misawa, Takahiro
    Motome, Yukitoshi
    PHYSICAL REVIEW X, 2025, 15 (01):
  • [30] Spin Seebeck effect near the antiferromagnetic spin-flop transition
    Reitz, Derek
    Li, Junxue
    Yuan, Wei
    Shi, Jing
    Tserkovnyak, Yaroslav
    PHYSICAL REVIEW B, 2020, 102 (02)