Dominant negative guard cell K+ channel mutants reduce inward-rectifying K+ currents and light-induced stomatal opening in arabidopsis

被引:158
作者
Kwak, JM
Murata, Y
Baizabal-Aguirre, VM
Merrill, J
Wang, M
Kemper, A
Hawke, SD
Tallman, G
Schroeder, JI
机构
[1] Univ Calif San Diego, Div Biol, Cell & Dev Biol Sect, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Ctr Genet Mol, La Jolla, CA 92093 USA
[3] Willamette Univ, Dept Biol, Salem, OR USA
关键词
D O I
10.1104/pp.010428
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Inward-rectifying potassium (K-in(+)) channels in guard cells have been suggested to provide a pathway for K+ uptake into guard cells during stomatal opening. To test the proposed role of guard cell K-in(+) channels in fight-induced stomatal opening, transgenic Arabidopsis plants were generated that expressed dominant negative point mutations in the K-in(+) channel subunit KAT1. Patch-clamp analyses with transgenic guard cells from independent lines showed that K-in(+) current magnitudes were reduced by approximately 75% compared with vector-transformed controls at -180 mV, which resulted in reduction in light-induced stomatal opening by 38% to 45% compared with vector-transformed controls. Analyses of intracellular K+ content using both sodium hexanitrocobaltate (III) and elemental x-ray microanalyses showed that light-induced K+ uptake was also significantly reduced in guard cells of K-in(+) channel depressor lines. These findings support the model that K-in(+) channels contribute to K+ uptake during light-induced stomatal opening. Furthermore, transpirational water loss from leaves was reduced in the K-in(+) channel depressor lines. Comparisons of guard cell K-in(+) current magnitudes among four different transgenic lines with different K-in(+) current magnitudes show the range of activities of K-in(+) channels required for guard cell K+ uptake during light-induced stomatal opening.
引用
收藏
页码:473 / 485
页数:13
相关论文
共 76 条
[1]   Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells [J].
Allen, GJ ;
Kwak, JM ;
Chu, SP ;
Llopis, J ;
Tsien, RY ;
Harper, JF ;
Schroeder, JI .
PLANT JOURNAL, 1999, 19 (06) :735-747
[2]   FUNCTIONAL EXPRESSION OF A PROBABLE ARABIDOPSIS-THALIANA POTASSIUM CHANNEL IN SACCHAROMYCES-CEREVISIAE [J].
ANDERSON, JA ;
HUPRIKAR, SS ;
KOCHIAN, LV ;
LUCAS, WJ ;
GABER, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (09) :3736-3740
[3]   Suppression of inward-rectifying K+ channels KAT1 and AKT2 by dominant negative point mutations in the KAT1 α-subunit [J].
Baizabal-Aguirre, VM ;
Clemens, S ;
Uozumi, N ;
Schroeder, JI .
JOURNAL OF MEMBRANE BIOLOGY, 1999, 167 (02) :119-125
[4]  
BECHTOLD N, 1993, CR ACAD SCI III-VIE, V316, P1194
[5]   Functional expression and characterization of a plant K+ channel gene in a plant cell model [J].
Bei, QX ;
Luan, S .
PLANT JOURNAL, 1998, 13 (06) :857-865
[6]   Structure and elemental compositon of grape berry stomata [J].
Blanke, MM ;
Pring, RJ ;
Baker, EA .
JOURNAL OF PLANT PHYSIOLOGY, 1999, 154 (04) :477-481
[7]  
BLATT MR, 1990, PLANTA, V180, P445, DOI 10.1007/BF00198799
[8]   REVERSIBLE INACTIVATION OF K+ CHANNELS OF VICIA STOMATAL GUARD-CELLS FOLLOWING THE PHOTOLYSIS OF CAGED INOSITOL 1,4,5-TRISPHOSPHATE [J].
BLATT, MR ;
THIEL, G ;
TRENTHAM, DR .
NATURE, 1990, 346 (6286) :766-769
[9]   MULTIPLE GENES, TISSUE-SPECIFICITY, AND EXPRESSION-DEPENDENT MODULATION CONTRIBUTE TO THE FUNCTIONAL DIVERSITY OF POTASSIUM CHANNELS IN ARABIDOPSIS-THALIANA [J].
CAO, YW ;
WARD, JM ;
KELLY, WB ;
ICHIDA, AM ;
GABER, RF ;
ANDERSON, JA ;
UOZUMI, N ;
SCHROEDER, JI ;
CRAWFORD, NM .
PLANT PHYSIOLOGY, 1995, 109 (03) :1093-1106
[10]   ABFs, a family of ABA-responsive element binding factors [J].
Choi, HI ;
Hong, JH ;
Ha, JO ;
Kang, JY ;
Kim, SY .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (03) :1723-1730