Novel triple-phase composite cathode materials for proton-conducting solid oxide fuel cells

被引:10
作者
Jiang, Qiumei [1 ]
Cheng, Jigui [1 ]
Wang, Rui [1 ]
Fan, Yumeng [1 ]
Gao, Jianfeng [2 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China
关键词
Proton-conducting solid oxide fuel cells; Composite cathode; Proton conductor; Sinterability; Electrochemical performance; LOW-TEMPERATURE SOFCS; THERMAL-EXPANSION; ELECTROCHEMICAL PERFORMANCE; PEROVSKITE;
D O I
10.1016/j.jpowsour.2012.01.084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ce0.8Sm0.2O2-delta (SDC), BaZr0.1Ce0.7Y0.2O3-delta (BZCY) powders are mechanically mixed with Smo.sSro.sC003_,s (SSC) powders to prepare triple-phase SSC-xSDC-(0.3 - x) BZCY (x = 0.1, 0.15, 0.2) composite cathode materials for proton-conducting solid oxide fuel cells (H-SOFCs). The SSC, SDC and BZCY powders are all synthesized via aqueous gelcasting method. Chemical compatibility, sinterability, microstructure, linear thermal expansion coefficients, electrical conductivity and electrochemical performance of the composite cathode materials are investigated and compared with single phase SSC and dual-phase SSC-0.3BZCY composite cathode materials. The results reveal that there have no observable chemical reactions among SSC. SDC and BZCY after co-firing the powder mixes at 1100 degrees C for 3 h. Adding SDC and BZCY into SSC material decreases open porosity, increases the shrinkage rate of the sintered SSC materials and significantly reduces thermal expansion mismatch between BZCY and SSC materials. Electrical conductivity of the triple-phase composite cathode samples ranges from about 130.8S cm(-1) to 342.3 S cm(-1) at temperature 450-800 degrees C, and increases as SDC content increases. Polarization resistances between the triple-phase composite cathode materials and the BZCY electrolyte decrease with increasing SDC content. The polarization resistance is significantly reduced from 1.57 Omega cm(2) for dual-phase SSC-0.3BZCY materials to 0.77 Omega cm(2) for triple-phase SSC-0.2SDC-0.1BZCY materials under open circuit conductions at 700 degrees C in air. The preliminary test results have suggested that triple-phase SSC-xSDC-(0.3 - x) BZCY (x= 0.1, 0.15, 0.2) materials may be a potential candidate of cathode material for H-SOFCs. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:47 / 52
页数:6
相关论文
共 50 条
  • [41] Electrode materials for solid oxide fuel cells with proton-conducting electrolyte based on CaZrO3
    Dunyushkina, L. A.
    Kuz'min, A. V.
    Kuimov, V. M.
    Khaliullina, A. Sh.
    Plekhanov, M. S.
    Bogdanovich, N. M.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2017, 53 (02) : 196 - 204
  • [42] Electrode materials for solid oxide fuel cells with proton-conducting electrolyte based on CaZrO3
    L. A. Dunyushkina
    A. V. Kuz’min
    V. M. Kuimov
    A. Sh. Khaliullina
    M. S. Plekhanov
    N. M. Bogdanovich
    Russian Journal of Electrochemistry, 2017, 53 : 196 - 204
  • [43] High-performance low-temperature solid oxide fuel cells using thin proton-conducting electrolyte with novel cathode
    Zhang, Limin
    Yang, Weishen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (10) : 8635 - 8640
  • [44] High performance BaCe0.5Fe0.5-xBixO3-δ as cobalt-free cathode for proton-conducting solid oxide fuel cells
    Wu, Yusen
    Hou, Jie
    Gong, Zheng
    Miao, Lina
    Tang, Haidi
    Liu, Wei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 790 : 551 - 557
  • [45] A chemically stable electrolyte with a novel sandwiched structure for proton-conducting solid oxide fuel cells (SOFCs)
    Bi, Lei
    Traversa, Enrico
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 36 : 42 - 45
  • [46] Defects evolution of Ca doped La2NiO4+δ and its impact on cathode performance in proton-conducting solid oxide fuel cells
    Li, Xinyu
    Huan, Daoming
    Shi, Nai
    Yang, Yi
    Wan, Yanhong
    Xia, Changrong
    Peng, Ranran
    Lu, Yalin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (35) : 17736 - 17744
  • [47] Microwave-induced oxygen vacancy-rich surface boosts the cathode performance for proton-conducting solid oxide fuel cells
    Wang, Lele
    Zhang, Liling
    Yu, Shoufu
    Gu, Yueyuan
    Bi, Lei
    CERAMICS INTERNATIONAL, 2023, 49 (13) : 22608 - 22616
  • [48] Solid oxide fuel cell with a BCY proton-conducting anode
    Hanamura, Katsunori
    Yano, Shinichi
    Ihara, Manabu
    Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2009, 75 (751): : 527 - 529
  • [49] Indium as an ideal functional dopant for a proton-conducting solid oxide fuel cell
    Bi, Lei
    Zhang, Shangquan
    Zhang, Lei
    Tao, Zetian
    Wang, Haiqian
    Liu, Wei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (05) : 2421 - 2425
  • [50] Multifactor theoretical analysis of current leakage in proton-conducting solid oxide fuel cells
    Qiu, Ruiming
    Lian, Wenchao
    Ou, Yongzhen
    Tao, Zetian
    Cui, Yuxin
    Tian, Zhipeng
    Wang, Chao
    Chen, Ying
    Liu, Jianping
    Lei, Libin
    Zhang, Jihao
    JOURNAL OF POWER SOURCES, 2021, 505