Novel triple-phase composite cathode materials for proton-conducting solid oxide fuel cells

被引:10
|
作者
Jiang, Qiumei [1 ]
Cheng, Jigui [1 ]
Wang, Rui [1 ]
Fan, Yumeng [1 ]
Gao, Jianfeng [2 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China
关键词
Proton-conducting solid oxide fuel cells; Composite cathode; Proton conductor; Sinterability; Electrochemical performance; LOW-TEMPERATURE SOFCS; THERMAL-EXPANSION; ELECTROCHEMICAL PERFORMANCE; PEROVSKITE;
D O I
10.1016/j.jpowsour.2012.01.084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ce0.8Sm0.2O2-delta (SDC), BaZr0.1Ce0.7Y0.2O3-delta (BZCY) powders are mechanically mixed with Smo.sSro.sC003_,s (SSC) powders to prepare triple-phase SSC-xSDC-(0.3 - x) BZCY (x = 0.1, 0.15, 0.2) composite cathode materials for proton-conducting solid oxide fuel cells (H-SOFCs). The SSC, SDC and BZCY powders are all synthesized via aqueous gelcasting method. Chemical compatibility, sinterability, microstructure, linear thermal expansion coefficients, electrical conductivity and electrochemical performance of the composite cathode materials are investigated and compared with single phase SSC and dual-phase SSC-0.3BZCY composite cathode materials. The results reveal that there have no observable chemical reactions among SSC. SDC and BZCY after co-firing the powder mixes at 1100 degrees C for 3 h. Adding SDC and BZCY into SSC material decreases open porosity, increases the shrinkage rate of the sintered SSC materials and significantly reduces thermal expansion mismatch between BZCY and SSC materials. Electrical conductivity of the triple-phase composite cathode samples ranges from about 130.8S cm(-1) to 342.3 S cm(-1) at temperature 450-800 degrees C, and increases as SDC content increases. Polarization resistances between the triple-phase composite cathode materials and the BZCY electrolyte decrease with increasing SDC content. The polarization resistance is significantly reduced from 1.57 Omega cm(2) for dual-phase SSC-0.3BZCY materials to 0.77 Omega cm(2) for triple-phase SSC-0.2SDC-0.1BZCY materials under open circuit conductions at 700 degrees C in air. The preliminary test results have suggested that triple-phase SSC-xSDC-(0.3 - x) BZCY (x= 0.1, 0.15, 0.2) materials may be a potential candidate of cathode material for H-SOFCs. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:47 / 52
页数:6
相关论文
共 50 条
  • [31] Modeling of Proton-Conducting Solid Oxide Fuel Cells Fueled with Syngas
    Ni, Meng
    Shao, Zongping
    Chan, Kwong Yu
    ENERGIES, 2014, 7 (07): : 4381 - 4396
  • [32] A new Pr0.25Nd0.25Sr0.5MnO3-δ cathode for proton-conducting solid oxide fuel cells
    He, Shoucheng
    Yin, Yanru
    Bi, Lei
    Dai, Hailu
    CERAMICS INTERNATIONAL, 2022, 48 (08) : 11872 - 11878
  • [33] Tailoring electronic structure of perovskite cathode for proton-conducting solid oxide fuel cells with high performance
    Xu, Xi
    Xu, Yangsen
    Ma, Jinming
    Yin, Yanru
    Fronzi, Marco
    Wang, Xianfen
    Bi, Lei
    JOURNAL OF POWER SOURCES, 2021, 489
  • [34] Modifying Mn-based R-P phase cathode properties for proton-conducting solid oxide fuel cells
    Ma, Lei
    Gong, Junyi
    Jin, Chujia
    Yang, Dandan
    Hou, Jie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 945
  • [35] High performance Ca-containing La2-xCaxNiO4+δ (0≤x≤0.75) cathode for proton-conducting solid oxide fuel cells
    Gu, Chun-Ye
    Wu, Xiu-Sheng
    Cao, Ju-Fang
    Hou, Jie
    Miao, Li-Na
    Xia, Yun-Peng
    Chao-Fu
    Liu, Wei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (43) : 23422 - 23432
  • [36] Proton-conducting solid oxide fuel cells prepared by a single step co-firing process
    Bi, Lei
    Tao, Zetian
    Sun, Wenping
    Zhang, Shangquan
    Peng, Ranran
    Liu, Wei
    JOURNAL OF POWER SOURCES, 2009, 191 (02) : 428 - 432
  • [37] Fabrication and study of LaNi0.6Fe0.4O3-δ and Sm0.5Sr0.5CoO3-δ composite cathode for proton-conducting solid oxide fuel cells
    Fu, Min
    Li, Kailin
    Yang, Yang
    Zeng, Qiaoling
    Zeng, Long
    Tao, Zetian
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 287
  • [38] PrBa0.5Sr0.5Cu2O6-δ as Composite Cathode for Proton-conducting Solid Oxide Fuel Cells
    Chen L.
    Su J.
    He H.
    Zhang Z.
    Cai B.
    Cailiao Daobao/Materials Reports, 2019, 33 (05): : 1615 - 1618
  • [39] Immobilizing U cations in Sr2Fe2O6-δ as a new cathode for proton-conducting solid oxide fuel cells
    Yu, Shoufu
    Yang, Xuan
    Wang, Yu
    Bi, Lei
    CERAMICS INTERNATIONAL, 2022, 48 (19) : 28751 - 28758
  • [40] Improving cathode electrocatalysis via Co-substitution-driven interstitial transport for proton-conducting solid oxide fuel cells
    Hu, Jiani
    Ma, Lei
    Jiang, Wang
    Xie, Zhangjin
    Wu, Fang
    Hou, Jie
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2025, 319