Boron distribution in the core of Si nanowire grown by chemical vapor deposition

被引:41
作者
Chen, Wanghua [1 ,2 ]
Dubrovskii, Vladimir G. [3 ,4 ]
Liu, Xiaolong [3 ,5 ]
Xu, Tao [6 ]
Larde, Rodrigue [1 ,2 ]
Nys, Jean Philippe [6 ]
Grandidier, Bruno [6 ]
Stievenard, Didier [6 ]
Patriarche, Gilles [7 ]
Pareige, Philippe [1 ,2 ]
机构
[1] Univ Rouen, Grp Phys Mat, Av Univ,BP 12, F-76801 St Etienne Du Rouvray, France
[2] INSA Rouen, CNRS, UMR 6634, F-76801 St Etienne Du Rouvray, France
[3] St Petersburg Acad Univ, St Petersburg 194021, Russia
[4] Ioffe Phys Tech Inst RAS, St Petersburg 194021, Russia
[5] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[6] CNRS, UMR 8520, Dept ISEN, Inst Elect Microelect & Nanotechnol, F-59046 Lille, France
[7] CNRS, Lab Photon & Nanostruct, F-91460 Marcoussis, France
基金
俄罗斯基础研究基金会;
关键词
DOPANT DISTRIBUTION; SILICON NANOWIRES; DIFFUSION; IMPURITIES;
D O I
10.1063/1.4714364
中图分类号
O59 [应用物理学];
学科分类号
摘要
The boron dopant distribution in Si nanowires grown by the Au-catalyzed chemical vapor deposition is characterized by laser-assisted atom probe tomography. A convenient and an effective method for performing the atom probe tomography of an individual nanowire is developed. Using this technique, we demonstrate that when Si nanowires are doped with boron at high silane partial pressure, the radial distribution of boron atoms is rather inhomogeneous. Much more boron atoms incorporate at the periphery than in the center, with the concentration increasing by an order of magnitude as the distance from the nanowire axis increases from zero to only 15 nm. A theoretical model is presented that is capable of describing the observed spatial inhomogeneity of boron dopant. We also consider different kinetic pathways of boron incorporation and discuss the values of diffusion length and diffusion coefficients obtained by fitting the experimental data. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4714364]
引用
收藏
页数:6
相关论文
共 30 条
  • [1] Study of the effect of gas pressure and catalyst droplets number density on silicon nanowires growth, tapering, and gold coverage
    Chen, W. H.
    Larde, R.
    Cadel, E.
    Xu, T.
    Grandidier, B.
    Nys, J. P.
    Stievenard, D.
    Pareige, P.
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 107 (08)
  • [2] Chen W. H., 2011, THESIS U ROUEN
  • [3] Nucleation mechanisms of epitaxial GaN nanowires: Origin of their self-induced formation and initial radius
    Consonni, V.
    Knelangen, M.
    Geelhaar, L.
    Trampert, A.
    Riechert, H.
    [J]. PHYSICAL REVIEW B, 2010, 81 (08):
  • [4] EXPERIMENTS ON ATOMIC-SCALE MECHANISMS OF DIFFUSION
    COWERN, NEB
    VANDEWALLE, GFA
    GRAVESTEIJN, DJ
    VRIEZEMA, CJ
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (02) : 212 - 215
  • [5] Atomistic mechanism of boron diffusion in silicon
    De Salvador, Davide
    Napolitani, Enrico
    Mirabella, Salvatore
    Bisognin, Gabriele
    Impellizzeri, Giuliana
    Carnera, Alberto
    Priolo, Francesco
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (25)
  • [6] Growth kinetics and crystal structure of semiconductor nanowires
    Dubrovskii, V. G.
    Sibirev, N. V.
    Harmand, J. C.
    Glas, F.
    [J]. PHYSICAL REVIEW B, 2008, 78 (23)
  • [7] Kinetics of the initial stage of coherent island formation in heteroepitaxial systems
    Dubrovskii, VG
    Cirlin, GE
    Ustinov, VM
    [J]. PHYSICAL REVIEW B, 2003, 68 (07):
  • [8] Dubrovskii VG, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.031604
  • [9] Segregation Behaviors and Radial Distribution of Dopant Atoms in Silicon Nanowires
    Fukata, Naoki
    Ishida, Shinya
    Yokono, Shigeki
    Takiguchi, Ryo
    Chen, Jun
    Sekiguchi, Takashi
    Murakami, Kouichi
    [J]. NANO LETTERS, 2011, 11 (02) : 651 - 656
  • [10] Garnett EC, 2009, NAT NANOTECHNOL, V4, P311, DOI [10.1038/nnano.2009.43, 10.1038/NNANO.2009.43]