Texture analysis of low-flow vascular malformations in the oral and maxillofacial region: venous malformation vs. lymphatic malformation

被引:2
作者
Ito, Kotaro [1 ]
Muraoka, Hirotaka [1 ]
Hirahara, Naohisa [1 ]
Sawada, Eri [1 ]
Tokunaga, Satoshi [1 ]
Kaneda, Takashi [1 ]
机构
[1] Nihon Univ, Sch Dent Matsudo, 2 Chome 870-1 Sakaechonishi, Matsudo, Chiba 2718587, Japan
关键词
magnetic resonance imaging; vascular malformations; lymphatic abnormalities; CLASSIFICATION; HEMANGIOMAS; MRI; CT;
D O I
10.5114/pjr.2022.119473
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: It is challenging for radiologists to distinguish between venous malformations (VMs) and lymphatic malformations (LMs) using magnetic resonance imaging (MRI). Thus, this study aimed to differentiate VMs from LMs using non-contrast-enhanced MRI texture analysis. Material and methods: This retrospective case-control study included 12 LM patients (6 men and 6 women; mean age 43.58, range 7-85 years) and 29 VM patients (7 men and 22 women; mean age 53.10, range 19-76 years) who underwent MRI for suspected vascular malformations. LM and VM patients were identified by histopathological examination of tissues excised during surgery. The texture features of VM and LM were analysed using the open-access software MaZda version 3.3. Seventeen texture features were selected using the Fisher and probability of error and average correlation coefficient methods in MaZda from 279 original parameters calculated for VM and LM. Results: Among 17 selected texture features, the patients with LM and VM revealed significant differences in 1 his-togram feature, 8 grey-level co-occurrence matrix (GLCM) features, and 1 grey-level run-length matrix feature. At the cut-off values of the histogram feature [skewness <= -0.131], and the GLCM features [S(0, 2) correlation >= 0.667, S(0, 3) correlation >= 0.451, S(0, 4) correlation >= 0.276, S(0, 5) correlation >= 0.389, S(1, 1) correlation >= 0.739, S(2, 2) correlation >= 0.446, S(2, -2) correlation >= 0.299, S(3, -3) correlation >= 0.091] had area under the curves of 0.724, 0.764, 0.773, 0.747, 0.733, 0.759, 0.730, 0.744 and 0.727, respectively. Conclusions: Non-contrast-enhanced MRI texture analysis allows us to differentiate between LMs and VMs.
引用
收藏
页码:E494 / E499
页数:6
相关论文
共 25 条
[1]   Texture Analysis in the Evaluation of COVID-19 Pneumonia in Chest X-Ray Images: A Proof of Concept Study [J].
Cavallo, Armando Ugo ;
Troisi, Jacopo ;
Forcina, Marco ;
Mari, Pier-Valerio ;
Forte, Valerio ;
Sperandio, Massimiliano ;
Pagano, Sergio ;
Cavallo, Pierpaolo ;
Floris, Roberto ;
Garaci, Francesco .
CURRENT MEDICAL IMAGING, 2021, 17 (09) :1094-1102
[2]   MRI Texture Analysis Reveals Deep Gray Nuclei Damage in Amyotrophic Lateral Sclerosis [J].
de Albuquerque, Milena ;
Anjos, Lara G. V. ;
Tavares de Andrade, Helen Maia ;
de Oliveira, Marcia S. ;
Castellano, Gabriela ;
Ribeiro de Rezende, Thiago Junqueira ;
Nucci, Anamarli ;
Franca Junior, Marcondes Cavalcante .
JOURNAL OF NEUROIMAGING, 2016, 26 (02) :201-206
[3]   Vascular malformations and hemangiomas: A practical approach in a multidisciplinary clinic [J].
Donnelly, LF ;
Adams, DM ;
Bisset, GS .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2000, 174 (03) :597-608
[4]   Imaging and therapeutic approach of hemangiomas and vascular malformations in the pediatric age group [J].
Dubois, J ;
Garel, L .
PEDIATRIC RADIOLOGY, 1999, 29 (12) :879-893
[5]   Vascular anomalies: what a radiologist needs to know [J].
Dubois, Josee ;
Alison, Marianne .
PEDIATRIC RADIOLOGY, 2010, 40 (06) :895-905
[6]  
Enjolras Odile, 1997, Journal of Dermatology (Tokyo), V24, P701
[7]   Texture analysis of MR images to identify the differentiated degree in hepatocellular carcinoma: a retrospective study [J].
Feng, Mengmeng ;
Zhang, Mengchao ;
Liu, Yuanqing ;
Jiang, Nan ;
Meng, Qian ;
Wang, Jia ;
Yao, Ziyun ;
Gan, Wenjuan ;
Dai, Hui .
BMC CANCER, 2020, 20 (01)
[8]   MR Imaging of Soft-Tissue Vascular Malformations: Diagnosis, Classification, and Therapy Follow-up [J].
Flors, Lucia ;
Leiva-Salinas, Carlos ;
Maged, Ismaeel M. ;
Norton, Patrick T. ;
Matsumoto, Alan H. ;
Angle, John F. ;
Bonatti, Hugo ;
Park, Auh Whan ;
Ahmad, Ehab Ali ;
Bozlar, Ugur ;
Housseini, Ahmed M. ;
Huerta, Thomas E. ;
Hagspiel, Klaus D. .
RADIOGRAPHICS, 2011, 31 (05) :1321-U315
[9]   Comprehensive time-resolved MRI of peripheral vascular malformations [J].
Herborn, CU ;
Goyen, M ;
Lauenstein, TC ;
Debatin, JF ;
Ruehm, SG ;
Kröger, K .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2003, 181 (03) :729-735
[10]   MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes - a feasibility study [J].
Holli-Helenius, Kirsi ;
Salminen, Annukka ;
Rinta-Kiikka, Irina ;
Koskivuo, Ilkka ;
Bruck, Nina ;
Bostrom, Pia ;
Parkkola, Riitta .
BMC MEDICAL IMAGING, 2017, 17