Epidemiological Models and Lyapunov Functions

被引:156
作者
Fall, A. [1 ,2 ,4 ]
Iggidr, A. [1 ,2 ]
Sallet, G. [1 ,2 ]
Tewa, J. J. [1 ,2 ,3 ]
机构
[1] INRIA Lorraine, F-57045 Metz 01, France
[2] Univ Paul Verlaine, Metz LMAM, CNRS, UMR 7122, F-57045 Metz 01, France
[3] Univ Yaounde, Yaounde, Cameroon
[4] St Louis Univ, St Louis, Senegal
关键词
nonlinear dynamical systems; global stability; Lyapunov methods; differential susceptibility models; GLOBAL ASYMPTOTIC STABILITY; STAGED-PROGRESSION; DIFFERENTIAL INFECTIVITY; ENDEMIC EQUILIBRIUM; NONLINEAR INCIDENCE; SEIR MODEL; HIV MODEL; DYNAMICS; TRANSMISSION; DISEASES;
D O I
10.1051/mmnp:2008011
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We give a survey of results on global stability for deterministic compartmental epidemiological models. Using Lyapunov techniques we revisit a classical result, and give a simple proof. By the same methods we also give a new result on differential susceptibility and infectivity models with mass action and an arbitrary number of compartments. These models encompass the so-called differential infectivity and staged progression models. In the two cases we prove that if the basic reproduction ratio R-0 <= 1, then the disease free equilibrium is globally asymptotically stable. If R-0 > 1, there exists an unique endemic equilibrium which is asymptotically stable on the positive orthant.
引用
收藏
页码:62 / 83
页数:22
相关论文
共 69 条
[1]  
Adda P, 2007, DISCRETE CONT DYN-B, V8, P1
[2]  
[Anonymous], 1985, Mathematics in Biology and Medicine
[3]   Global results for an epidemic model with vaccination that exhibits backward bifurcation [J].
Arino, J ;
McCluskey, CC ;
Van den Driessche, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 64 (01) :260-276
[4]  
BAME N, MATH BIOSCI IN PRESS
[5]   ON THE GENERAL STRUCTURE OF EPIDEMIC SYSTEMS - GLOBAL ASYMPTOTIC STABILITY [J].
BERETTA, E ;
CAPASSO, V .
COMPUTERS & MATHEMATICS WITH APPLICATIONS-PART A, 1986, 12 (06) :677-694
[6]   GLOBAL ASYMPTOTIC STABILITY OF LOTKA-VOLTERRA DIFFUSION-MODELS WITH CONTINUOUS-TIME DELAY [J].
BERETTA, E ;
TAKEUCHI, Y .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (03) :627-651
[7]  
Bermudez A. J., 1994, SAVMA Symposium 1994 Proceedings., P1
[8]   A METHOD FOR PROVING THE NONEXISTENCE OF LIMIT-CYCLES [J].
BUSENBERG, S ;
VANDENDRIESSCHE, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 172 (02) :463-479
[9]  
DIEKMANN O, 1990, J MATH BIOL, V28, P365
[10]  
Diekmann O., 2000, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation