Epidemiological Models and Lyapunov Functions

被引:151
作者
Fall, A. [1 ,2 ,4 ]
Iggidr, A. [1 ,2 ]
Sallet, G. [1 ,2 ]
Tewa, J. J. [1 ,2 ,3 ]
机构
[1] INRIA Lorraine, F-57045 Metz 01, France
[2] Univ Paul Verlaine, Metz LMAM, CNRS, UMR 7122, F-57045 Metz 01, France
[3] Univ Yaounde, Yaounde, Cameroon
[4] St Louis Univ, St Louis, Senegal
关键词
nonlinear dynamical systems; global stability; Lyapunov methods; differential susceptibility models; GLOBAL ASYMPTOTIC STABILITY; STAGED-PROGRESSION; DIFFERENTIAL INFECTIVITY; ENDEMIC EQUILIBRIUM; NONLINEAR INCIDENCE; SEIR MODEL; HIV MODEL; DYNAMICS; TRANSMISSION; DISEASES;
D O I
10.1051/mmnp:2008011
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We give a survey of results on global stability for deterministic compartmental epidemiological models. Using Lyapunov techniques we revisit a classical result, and give a simple proof. By the same methods we also give a new result on differential susceptibility and infectivity models with mass action and an arbitrary number of compartments. These models encompass the so-called differential infectivity and staged progression models. In the two cases we prove that if the basic reproduction ratio R-0 <= 1, then the disease free equilibrium is globally asymptotically stable. If R-0 > 1, there exists an unique endemic equilibrium which is asymptotically stable on the positive orthant.
引用
收藏
页码:62 / 83
页数:22
相关论文
共 69 条
  • [1] Adda P, 2007, DISCRETE CONT DYN-B, V8, P1
  • [2] [Anonymous], 1985, Mathematics in Biology and Medicine
  • [3] Global results for an epidemic model with vaccination that exhibits backward bifurcation
    Arino, J
    McCluskey, CC
    Van den Driessche, P
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 64 (01) : 260 - 276
  • [4] BAME N, MATH BIOSCI IN PRESS
  • [5] ON THE GENERAL STRUCTURE OF EPIDEMIC SYSTEMS - GLOBAL ASYMPTOTIC STABILITY
    BERETTA, E
    CAPASSO, V
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS-PART A, 1986, 12 (06): : 677 - 694
  • [6] GLOBAL ASYMPTOTIC STABILITY OF LOTKA-VOLTERRA DIFFUSION-MODELS WITH CONTINUOUS-TIME DELAY
    BERETTA, E
    TAKEUCHI, Y
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (03) : 627 - 651
  • [7] Bermudez A. J., 1994, SAVMA Symposium 1994 Proceedings., P1
  • [8] A METHOD FOR PROVING THE NONEXISTENCE OF LIMIT-CYCLES
    BUSENBERG, S
    VANDENDRIESSCHE, P
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 172 (02) : 463 - 479
  • [9] DIEKMANN O, 1990, J MATH BIOL, V28, P365
  • [10] Diekmann O., 2000, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation