CHRISTOFFEL FUNCTIONS AND UNIVERSALITY LIMITS FOR ORTHOGONAL RATIONAL FUNCTIONS

被引:1
作者
Deckers, Karl [1 ]
Lubinsky, Doron S. [2 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Louvain, Belgium
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Orthogonal rational functions; universality limits; Christoffel functions; CHEBYSHEV QUADRATURE-FORMULAS; COMPLEX POLES; UNIT-CIRCLE; ASYMPTOTICS; BULK;
D O I
10.1142/S0219530512500133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish limits for Christoffel functions associated with orthogonal rational functions, whose poles remain a fixed distance away from the interval of orthogonality[-1, 1], and admit a suitable asymptotic distribution. The measure of orthogonality mu is assumed to be regular on [-1, 1], and to satisfy a local condition such as continuity of mu'. As a consequence, we deduce universality limits in the bulk for reproducing kernels associated with orthogonal rational functions.
引用
收藏
页码:271 / 294
页数:24
相关论文
共 21 条
[1]  
[Anonymous], 1999, COURANT I LECT NOTES
[2]  
[Anonymous], 1997, Logarithmic Potentials with External Fields
[3]  
Baratchart L., J ANAL MATH IN PRESS
[4]   Boundary asymptotics for orthogonal rational functions on the unit circle [J].
Bultheel, A ;
Van Gucht, P .
ACTA APPLICANDAE MATHEMATICAE, 2000, 61 (1-3) :333-349
[5]  
Bultheel A., 1999, ORTHOGONAL RATIONAL
[6]  
Deckers K., 2011, JAEN J APPROXIMATION, V3, P15
[7]  
Deckers K, 2008, MATH COMPUT, V77, P967, DOI 10.1090/S0025-5718-07-01982-5
[8]   Computing rational Gauss-Chebyshev quadrature formulas with complex poles: The algorithm [J].
Deckers, Karl ;
Van Deun, Joris ;
Bultheel, Adhemar .
ADVANCES IN ENGINEERING SOFTWARE, 2009, 40 (08) :707-717
[9]   Recurrence and asymptotics for orthonormal rational functions on an interval [J].
Deckers, Karl ;
Bultheel, Adhemar .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (01) :1-23
[10]   Universality for locally Szego measures [J].
Findley, Elliot .
JOURNAL OF APPROXIMATION THEORY, 2008, 155 (02) :136-154