Proof of Sun's conjecture on the divisibility of certain binomial sums

被引:0
作者
Guo, Victor J. W. [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
关键词
congruences; binomial coefficients; super Catalan numbers; Stirling's formula;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the following result conjectured by Z.-W. Sun: (2n - 1) ((3n)(n)) vertical bar Sigma(n)(k=0)((6k)(3k))((3k)(k))((6(n-k))(3(n-k)))((3(n-k))(n-k)) by showing that the left-hand side divides each summand on the right-hand side.
引用
收藏
页数:5
相关论文
共 7 条
[1]   Factorial ratios, hypergeometric series, and a family of step functions [J].
Bober, Jonathan W. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 79 :422-444
[2]   SUPER BALLOT NUMBERS [J].
GESSEL, IM .
JOURNAL OF SYMBOLIC COMPUTATION, 1992, 14 (2-3) :179-194
[3]  
POLYA G, 1976, GRUNDLEHREN MATH WIS, V216
[4]  
Sun Z.-H., PREPRINT
[5]   ON DIVISIBILITY OF BINOMIAL COEFFICIENTS [J].
Sun, Zhi-Wei .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 93 (1-2) :189-201
[6]  
Sun ZW, 2013, ELECTRON J COMB, V20
[7]   A q-rious positivity [J].
Warnaar, S. Ole ;
Zudilin, W. .
AEQUATIONES MATHEMATICAE, 2011, 81 (1-2) :177-183