Periodic Homoclinic Wave of (1+1)-Dimensional Long-Short Wave Equation

被引:1
作者
Li Dong-Long [1 ]
Dai Zheng-De [1 ,2 ]
Guo Yan-Feng [1 ]
机构
[1] Guangxi Univ Technol, Dept Informat & Comp Sci, Liuzhou 545006, Peoples R China
[2] Yunnan Univ, Sch Math & Phys, Kunming 650091, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The exact periodic homoclinic wave of (1+1)D long-short wave equation is obtained using an extended homoclinic test technique. This result shows complexity and variety of dynamical behavior for a (1+1)-dimensional long-short wave equation.
引用
收藏
页码:4189 / 4191
页数:3
相关论文
共 35 条
  • [1] Abassy TA, 2004, INT J NONLIN SCI NUM, V5, P327
  • [2] Ablowitz M.J., 1991, SOLITONS NONLINEAR E
  • [3] COHERENT SPATIAL STRUCTURE VERSUS TIME CHAOS IN A PERTURBED SINE-GORDON SYSTEM
    BISHOP, AR
    FESSER, K
    LOMDAHL, PS
    KERR, WC
    WILLIAMS, MB
    TRULLINGER, SE
    [J]. PHYSICAL REVIEW LETTERS, 1983, 50 (15) : 1095 - 1098
  • [4] Mel'nikov analysis of numerically induced chaos in the nonlinear Schrodinger equation
    Calini, A
    Ercolani, NM
    McLaughlin, DW
    Schober, CM
    [J]. PHYSICA D, 1996, 89 (3-4): : 227 - 260
  • [5] Dai ZD, 2006, CHINESE PHYS LETT, V23, P1065, DOI 10.1088/0256-307X/23/5/001
  • [6] Explicit homoclinic tube solutions and chaos for Zakharov system with periodic boundary
    Dai, ZD
    Huang, J
    Jiang, MR
    [J]. PHYSICS LETTERS A, 2006, 352 (4-5) : 411 - 415
  • [7] Homoclinic orbits and periodic solitons for Boussinesq equation with even constraint
    Dai, ZD
    Huang, J
    Jiang, MR
    Wang, S
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 26 (04) : 1189 - 1194
  • [8] DAI ZD, 2007, CHINESE J PHYS, V45, P62
  • [9] Exact periodic solitary-wave solution for KdV equation
    School of Mathematics and Physics, Yunnan University, Kunming 650091, China
    不详
    不详
    [J]. Chin. Phys. Lett., 2008, 5 (1531-1533): : 1531 - 1533
  • [10] Dai ZD, 2007, CHINESE PHYS LETT, V24, P1429, DOI 10.1088/0256-307X/24/6/001